Physics 780 - General Relativity
 Homework Set U

49. Way back in the previous millennium (i.e., pre-1995) we only knew about matter (and a tiny bit of radiation), and were none too confident about the value of Ω_{m}. For this problem, assume the universe contains matter only.
(a) Show that if $\Omega_{m} \leq 1$, the universe will never stop growing, i.e., there is no time in the future when $\dot{a}=0$.
(b) Show that if $\Omega_{m}>1$, it is inevitable that the universe will eventually stop growing. Find a formula for the size of the universe compared to now, a / a_{0}, when the universe will stop growing as a function of Ω_{m}.
50. Suppose in some gauge choice, an almost-flat universe has metric perturbations that satisfy the harmonic condition, $\partial_{\mu} h^{\mu}{ }_{\beta}(x)=\frac{1}{2} \partial_{\beta} h^{\mu}{ }_{\mu}(x)$.
(a) Show that if we make a small coordinate change $x^{\mu} \rightarrow x^{\mu}+\xi^{\mu}$, the harmonic condition is still preserved if $\square \xi_{\mu}=0$.
(b) Suppose we are looking at wave solutions $h_{\mu \nu}(x)=h_{\mu \nu} e^{i \mathbf{k} \cdot \mathbf{x}-i o t}$, with $|\mathbf{k}|=\omega$. Show that the coordinate change $\xi_{0}=\left(i h_{00} / 2 \omega\right) e^{i \mathbf{k} \cdot \mathbf{x}-i \omega t}$ will cause $h_{00}^{\prime}=0$.
(c) Show that a subsequent coordinate change $\xi_{i}=\left(i h_{i 0} / \omega\right) e^{i \mathbf{k} \cdot x-i \omega t}$ will cause $h_{i 0}^{\prime}=0$.
51. We defined gravity waves by writing $h_{\mu \nu}(x)=h_{\mu \nu} \exp (i \mathbf{k} \cdot \mathbf{x}-i \omega t)$, and then writing h in terms of two polarization vectors $h_{\mu \nu}=h_{+} e_{\mu \nu}^{+}+h_{\times} e_{\mu \nu}^{\times}$. These are not the only choices for the basis tensors for gravity waves. Let's assume \mathbf{k} is in the z-direction.
(a) Define the right-helicity and left-helicity vectors as $e_{\mu \nu}^{R}=e_{\mu \nu}^{+}+i e_{\mu \nu}^{\times}$and $e_{\mu \nu}^{L}=e_{\mu \nu}^{+}-i e_{\mu \nu}^{\times}$. Show that any wave can be written in the form $h_{\mu \nu}=h_{R} e_{\mu \nu}^{R}+h_{L} e_{\mu \nu}^{L}$, and find formulas for $h_{R, L}$ in terms of $h_{+, \times}$and vice-versa.
(b) Consider a wave containing only the right-helicity wave (i.e. $h_{L}=0$). Perform a rotation of this wave around the z-axis by an angle θ, with inverse Lorentz transformation

$$
\left(\Lambda^{-1}\right)_{v}^{\mu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Show that such a transformation simply multiplies the metric perturbation $h_{\mu \nu}$ by a phase $e^{\text {im } \theta}$ and determine the value of the helicity m. Note that Lorentz transforms on indices that are down work as $h_{\mu \nu}^{\prime}=h_{\alpha \beta}\left(\Lambda^{-1}\right)_{\mu}^{\alpha}\left(\Lambda^{-1}\right)_{\nu}^{\beta}$. Repeat for the left-helicity wave.

