Physics 780 - General Relativity

Homework Set O

36. In homework set L, problem 30, you found the general solution for a black hole if there is also a cosmological constant. In the problem, we are going to consider a universe with no black hole and just a cosmological constant, with metric

$$
d s^{2}=-\left(1-\frac{1}{3} \Lambda r^{2}\right) \mathrm{d} t^{2}+\left(1-\frac{1}{3} \Lambda r^{2}\right)^{-1} \mathrm{~d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right) .
$$

Our ultimate goal is to change coordinates to get rid of the apparent singularity, and make a Penrose diagram for this metric.
(a) This metric has an apparent singularity at $r=b$ (what is b ?). Rewrite the metric in terms of b instead of Λ. In which regions of radius $r \in(0, \infty)$ are r and t spacelike or timelike?
(b) As we did for Schwarzschild, define a coordinate $r^{*}=r^{*}(r)$ such that light-like radial curves will have $d r^{*} / d t= \pm 1$, i.e., at 45° angles. This will require an integration; choose the constant of integration so that $r^{*}=0$ when $r=0$. What value of r^{*} corresponds to the trouble spot $r=b$?
(c) Unlike Schwarzschild, it is easy to invert this relation, so we can find $r=r\left(r^{*}\right)$. Use this to write the metric entirely in terms of r^{*}. Then change variables to null coordinates $t, r^{*} \rightarrow u, v$, where $v=t+r^{*}$ and $u=t-r^{*}$. In u, v coordinates, where is $r=0$ now? In u, v coordinates, where is $r=b$ now? Write the metric in terms of u and v.
(d) In an attempt to get $r=b$ back under control, define new coordinates $v^{\prime}=-e^{-v / b}$ and $u^{\prime}=e^{u / b}$. Write the metric in terms of u^{\prime} and v^{\prime}. Write a formula for r in terms of u^{\prime} and v^{\prime}. Write the metric in terms of u^{\prime} and v^{\prime}. What is the equation for the points that correspond to $r=0$? To $r=b$? To $r=\infty$?
(e) Define new coordinates $u^{\prime \prime}=\tan ^{-1}\left(u^{\prime}\right), v^{\prime \prime}=\tan ^{-1}\left(v^{\prime}\right)$. Write the metric in terms of $u^{\prime \prime}$ and $v^{\prime \prime}$. For this final step, eliminate b and go back to Λ for the metric.
(f) Make a final change of coordinates to $u^{\prime \prime}, v^{\prime \prime} \rightarrow R, T$, where $v^{\prime \prime}=\frac{1}{2}(T+R)$ and $u^{\prime \prime}=\frac{1}{2}(T-R)$. Write the metric in terms of T and R. In (T, R) space, where are the locations $r=0, b$, and ∞ ? Make a Penrose diagram in (T, R) coordinates, with these three values of r marked as one or more lines.

Possibly Helpful Formulas: $\int \frac{d x}{b^{2}-x^{2}}=\frac{1}{b} \tanh ^{-1}\left(\frac{x}{b}\right), \frac{d}{d \psi} \tanh \psi=\operatorname{sech}^{2} \psi$

$$
\begin{gathered}
\tanh ^{2} \psi+\operatorname{sech}^{2} \psi=1, \quad \tanh \psi=\frac{e^{\psi}-e^{-\psi}}{e^{\psi}+e^{-\psi}}, \quad \operatorname{sech} \psi=\frac{2}{e^{\psi}+e^{-\psi}} \\
\cos (\alpha \pm \beta)=\cos (\alpha) \cos (\beta) \mp \sin (\alpha) \sin (\beta)
\end{gathered}
$$

