Physics 780 – General Relativity Homework Set K

27. In problems 20 and 25, you had to work out a rather specific metric, but where did this metric come from? Our goal is to find the most general 3D spatial metric that is spherically symmetric; that is, one can choose two of the coordinates θ and ϕ such that the three vectors

 $L_x = -\sin\phi \partial_\theta - \cot\theta \cos\phi \partial_\phi, \quad L_y = \cos\phi \partial_\theta - \cot\theta \sin\phi \partial_\phi, \quad L_z = \partial_\phi,$

are all Killing vectors, which satisfy Killing's equation

$$K^{\alpha}\partial_{\alpha}g_{\mu\nu} + g_{\mu\alpha}\partial_{\nu}K^{\alpha} + g_{\nu\alpha}\partial_{\mu}K^{\alpha} = 0.$$

We will in fact only use L_z and L_x , and will call our remaining coordinate r.

- (a) Using the fact that L_z is a Killing vector, argue that all our metric components are not functions of ϕ , so $g_{\mu\nu} = g_{\mu\nu}(r, \theta)$. For parts (b) through (f), we will work with L_x .
- (b) Apply Killing's equation for $\mu = v = r$, and show that in fact g_{rr} isn't a function of θ .
- (c) Apply Killing's equation for $\mu = r, \nu = \theta$, and evaluate it at $\phi = 0$ to show that $g_{r\phi} = 0$.
- (d) Apply Killing's equation for $\mu = r, \nu = \phi$ to show that $g_{r\theta} = 0$.
- (e) Write Killing's equation for $\mu = \nu = \theta$, and by evaluating it at $\phi = 0$ and $\phi = \frac{1}{2}\pi$, show that $g_{\phi\theta} = 0$ and $g_{\theta\theta}$ is not a function of θ .
- (f) Apply Killing's equation for $\mu = \theta, \nu = \phi$ to show that $g_{\phi\phi} = \sin^2 \theta g_{\theta\theta}$.
- (g) At this point, the metric must take the form $ds^2 = a(r)dr^2 + b(r)(d\theta^2 + \sin^2\theta d\phi^2)$. Change variables $r \to r'$, where $r' = \sqrt{b(r)}$. What is the form of the metric now? If you need it, just let b^{-1} be the inverse function of *b*.