Physics 780 - General Relativity
 Homework Set K

27. In problems 20 and 25, you had to work out a rather specific metric, but where did this metric come from? Our goal is to find the most general 3D spatial metric that is spherically symmetric; that is, one can choose two of the coordinates θ and ϕ such that the three vectors

$$
L_{x}=-\sin \phi \partial_{\theta}-\cot \theta \cos \phi \partial_{\phi}, \quad L_{y}=\cos \phi \partial_{\theta}-\cot \theta \sin \phi \partial_{\phi}, \quad L_{z}=\partial_{\phi},
$$

are all Killing vectors, which satisfy Killing's equation

$$
K^{\alpha} \partial_{\alpha} g_{\mu \nu}+g_{\mu \alpha} \partial_{\nu} K^{\alpha}+g_{v \alpha} \partial_{\mu} K^{\alpha}=0 .
$$

We will in fact only use L_{z} and L_{x}, and will call our remaining coordinate r.
(a) Using the fact that L_{z} is a Killing vector, argue that all our metric components are not functions of ϕ, so $g_{\mu \nu}=g_{\mu \nu}(r, \theta)$. For parts (b) through (f), we will work with L_{x}.
(b) Apply Killing's equation for $\mu=v=r$, and show that in fact $g_{r r}$ isn't a function of θ.
(c) Apply Killing's equation for $\mu=r, v=\theta$, and evaluate it at $\phi=0$ to show that $g_{r \phi}=0$.
(d) Apply Killing's equation for $\mu=r, v=\phi$ to show that $g_{r \theta}=0$.
(e) Write Killing's equation for $\mu=v=\theta$, and by evaluating it at $\phi=0$ and $\phi=\frac{1}{2} \pi$, show that $g_{\phi \theta}=0$ and $g_{\theta \theta}$ is not a function of θ.
(f) Apply Killing's equation for $\mu=\theta, v=\phi$ to show that $g_{\phi \phi}=\sin ^{2} \theta g_{\theta \theta}$.
(g) At this point, the metric must take the form $d s^{2}=a(r) \mathrm{d} r^{2}+b(r)\left(\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)$.

Change variables $r \rightarrow r^{\prime}$, where $r^{\prime}=\sqrt{b(r)}$. What is the form of the metric now? If you need it, just let b^{-1} be the inverse function of b.

