Physics 780 - General Relativity
 Homework Set J

25. In homework set H, problem 20, you had to work out all the components if $\Gamma_{\alpha \beta}^{\nu}$ for the metric $d s^{2}=h(r) \mathrm{d} r^{2}+r^{2} \mathrm{~d} \theta^{2}+r^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}$.
(a) Use these to get all non-zero components of the Riemann tensor of the form $R^{\mu}{ }_{v \mu \nu}$ (no sums). There should be six in total. As a check, note that they must all vanish if $h(r)=1$.
(b) Find the diagonal components of the Ricci tensor, $R_{\mu \nu}=R^{\alpha}{ }_{\mu \alpha \nu}$, for the three components $R_{r r}, R_{\theta \theta}$, and $R_{\phi \phi}$. If you have made no mistakes so far, you should find $R_{\phi \phi}=\sin ^{2} \theta R_{\theta \theta}$.
(c) Find the Ricci scalar and show that it equals $R=\frac{2 h^{\prime}}{h^{2} r}+\frac{2}{r^{2}}-\frac{2}{r^{2} h}$.
26. Assume that the metric found in question 25 is homogenous, and in particular, the Ricci scalar is a constant given by $6 C$, so $R=6 C$.
(a) Find a simple formula for the combination $\frac{1}{r^{2}} \frac{d}{d r}\left(\frac{r}{h}\right)$.
(b) Multiply this equation by r^{2} and integrate it. The constant of integration can be found if we insist that $h(r)$ does not diverge at the origin. Solve the equation for h.
