Physics 780 – General Relativity Homework Set I

- 21. Consider a geodesic in flat 2D space, but working in polar coordinates ds² = dρ² + ρ²dφ². The non-vanishing Christoffel symbols are Γ^φ_{ρφ} = Γ^φ_{φρ} = ρ⁻¹, Γ^ρ_{φφ} = -ρ. Because we have space and no time, geodesics are parameterized by s, not τ.
 (a) Write both components of the geodesic equations for dU^μ/ds.
 - (b) Show that on a geodesic, $\rho^2 U^{\phi}$ is constant, that is, $\frac{d}{ds} (\rho^2 U^{\phi}) = 0$. Hint: on the dU^{ϕ}/ds equation, replace $U^{\rho} = d\rho/ds$ and then multiply it by ρ^2 .
- 22. Write out $[\nabla_{\mu}, \nabla_{\nu}]g_{\alpha\beta}$ in terms of the Riemann tensor, and then use the fact that the metric has vanishing covariant derivative to show that $R_{\alpha\beta\mu\nu} = -R_{\beta\alpha\nu\mu}$
- 23. Show the Jacobi identity $\left[\left[\nabla_{\mu}, \nabla_{\nu} \right], \nabla_{\alpha} \right] + \left[\left[\nabla_{\nu}, \nabla_{\alpha} \right], \nabla_{\mu} \right] + \left[\left[\nabla_{\alpha}, \nabla_{\mu} \right], \nabla_{\nu} \right] = 0$
- 24. By letting the Jacobi identity act on a scalar ϕ , show that $R^{\beta}_{\ \alpha\mu\nu} + R^{\beta}_{\ \nu\alpha\mu} + R^{\beta}_{\ \nu\alpha\mu} = 0$.