Physics 780 – General Relativity Homework Set H

- 19. In homework E problem 12 we had flat 2D space ds² = dx² + dy², and then switched to polar coordinates ds² = dρ² + ρ²dθ². We considered a vector V^μ = (V^x, V^y) = (A,0), and a 1-form V_μ = (V_x, V_y) = (A,0), where A is a constant. The Christoffel symbols in polar coordinates are Γ^φ_{ρφ} = Γ^φ_{ρφ} = r⁻¹, Γ^ρ_{φφ} = -r, all others vanish.
 - (a) Convince yourself that in the original Cartesian coordinates, all the Christoffel symbols vanish and $\nabla_{\alpha}V^{\mu} = 0$ and $\nabla_{\alpha}V_{\mu} = 0$. *This is trivial*.
 - (b) Show explicitly that in polar coordinates $\nabla_{\alpha}V^{\mu} = 0$ (this is four equations).
 - (c) Show explicitly that in polar coordinates $\nabla_{\alpha} V_{\mu} = 0$ (this is four equations).
- 20. Consider a generic 3D spherically symmetric metric, which can be written in the form

$$ds^{2} = h(r) dr^{2} + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta d\phi^{2},$$

where h(r) is an unspecified function of r. It is common to abbreviate h(r) as h and its derivative as h'. Our goal is to find all the non-zero components of the Christoffel symbol.

- (a) Write the metric and its inverse as a matrix (this is easy).
- (b) Argue that if $\Gamma_{\alpha\beta}^{\nu} \neq 0$ then an even number of indices must be ϕ .
- (c) Argue that if $\Gamma^{\nu}_{\alpha\beta} \neq 0$ then an even number of indices must be θ or there must be at least one index that is ϕ .
- (c) Calculate all non-vanishing components of $\Gamma^{\nu}_{\alpha\beta}$. There should be ten of them.