Physics 780 - General Relativity

Homework Set F

14. The metric in flat 3D space is $d s^{2}=\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}$. Show that in spherical coordinates, this is given by $d s^{2}=\mathrm{d} r^{2}+r^{2} \mathrm{~d} \theta^{2}+r^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}$. Spherical coordinates are defined by

$$
x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta
$$

15. Consider the 3D metric $d s^{2}=\left(1-r^{2}\right)^{-1} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \theta^{2}+r^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}$. This has an apparent singularity at $r=0$, because the determinant $g=0$ there, but we understand that that's just a coordinate singularity at a point. What about the apparent singularity at $r=1$, where $g=\infty$?
(a) By looking, for example, at the circle defined by $r \rightarrow 1, \theta=\frac{1}{2} \pi, \phi=(0,2 \pi)$ argue that those points with $r=1$ are decidedly not just a point.
(b) Make the substitution $r=\sin \psi$, while keeping the coordinates θ and ϕ. Show that the resulting metric no longer has a singularity at $r=1$ (now at $\psi=\frac{1}{2} \pi$).
(c) There is now an apparent singularity where the metric has problems at $\psi=\pi$. Convince yourself that this is, in fact, just a point.
16. Given a metric, is it curved? The answer isn't always obvious. Consider the metric

$$
d s^{2}=-\mathrm{d} t^{2}+t^{2}\left(\frac{\mathrm{~d} r^{2}}{1+r^{2}}+r^{2} \mathrm{~d} \theta^{2}+r^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}\right)
$$

We will convert to coordinates $(t, r, \theta, \phi) \rightarrow(T, R, \theta, \phi)$, defined by

$$
\left\{\begin{array}{c}
T=t \sqrt{r^{2}+1} \\
R=r t
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}
t=\sqrt{T^{2}-R^{2}} \\
r=\frac{R}{\sqrt{T^{2}-R^{2}}}
\end{array}\right\}
$$

with θ and ϕ the same in both coordinate systems
(a) Write $\mathrm{d} t$ and $\mathrm{d} r$ in terms of $\mathrm{d} T$ and $\mathrm{d} R$.
(b) Write the metric out entirely in the new coordinates. If you make no mistake, there should be no cross-terms and the coefficients should all be simple.
(c) By comparison with the metric in problem 14, argue this is simply disguised flat spacetime.

