Physics 780 – General Relativity Homework E

12. Consider the coordinate transformation in 2D relating Cartesian coordinates to polar,

$$\begin{array}{l} x = \rho \cos \phi \\ y = \rho \sin \phi \end{array} \iff \begin{array}{l} \rho = \sqrt{x^2 + y^2} \\ \phi = \tan^{-1}(y/x) \end{array}$$

- (a) If we have a vector $(V^x, V^y) = (A, 0)$, what is V is (V^{ρ}, V^{ϕ}) ? Write your answers in terms of (ρ, ϕ) .
- (b) If we have a 1-form $(V_x, V_y) = (A, 0)$, what is V is (V_ρ, V_ϕ) ? Write your answers in terms of (ρ, ϕ) .
- (c) If we have a tensor of type $T^{xx} = A$, with all other components vanishing, what are the components of *T* in the (ρ, ϕ) system? Write your answers in terms of (ρ, ϕ) .
- 13. Consider the components of a pair of vectors in 2D, $[V,W]^{\mu}$, where $V = V^{\mu}\partial_{\mu}$ and $W = W^{\mu}\partial_{\mu}$
 - (a) Find the commutator if $(V^x, V^y) = (-y, x)$ and $(W^x, W^y) = (x, y)$. Is it possible that these vectors correspond to partial derivatives of some coordinates (r, θ) , *i.e.*, is it possible for $V = \partial_{\theta}$ and $W = \partial_r$ (hint: partial derivatives commute)?
 - (b) Find the commutator if $(V^x, V^y) = (y, x)$ and $(W^x, W^y) = (x, y)$. Is it possible that these vectors correspond to partial derivatives of some coordinates (r, θ) ?