Physics 780 - General Relativity
 Homework E

12. Consider the coordinate transformation in 2D relating Cartesian coordinates to polar,

$$
\begin{gathered}
x=\rho \cos \phi \\
y=\rho \sin \phi
\end{gathered} \Leftrightarrow \quad \begin{gathered}
\rho=\sqrt{x^{2}+y^{2}} \\
\phi=\tan ^{-1}(y / x)
\end{gathered}
$$

(a) If we have a vector $\left(V^{x}, V^{y}\right)=(A, 0)$, what is V is $\left(V^{\rho}, V^{\phi}\right)$? Write your answers in terms of (ρ, ϕ).
(b) If we have a 1-form $\left(V_{x}, V_{y}\right)=(A, 0)$, what is V is $\left(V_{\rho}, V_{\phi}\right)$? Write your answers in terms of (ρ, ϕ).
(c) If we have a tensor of type $T^{x x}=A$, with all other components vanishing, what are the components of Tin the (ρ, ϕ) system? Write your answers in terms of (ρ, ϕ).
13. Consider the components of a pair of vectors in 2D, $[V, W]^{\mu}$, where $V=V^{\mu} \partial_{\mu}$ and $W=W^{\mu} \partial_{\mu}$
(a) Find the commutator if $\left(V^{x}, V^{y}\right)=(-y, x)$ and $\left(W^{x}, W^{y}\right)=(x, y)$. Is it possible that these vectors correspond to partial derivatives of some coordinates (r, θ), i.e., is it possible for $V=\partial_{\theta}$ and $W=\partial_{r}$ (hint: partial derivatives commute)?
(b) Find the commutator if $\left(V^{x}, V^{y}\right)=(y, x)$ and $\left(W^{x}, W^{y}\right)=(x, y)$. Is it possible that these vectors correspond to partial derivatives of some coordinates (r, θ) ?

