Physics 780 – General Relativity Homework D

- 10. The stress-energy tensor for a perfect fluid is given by $T^{\mu\nu} = (\rho + p)U^{\mu}U^{\nu} + p\eta^{\mu\nu}$. All substances we know of have positive energy density, that is, $T^{00} > 0$.
 - (a) If perfect fluid is going at almost the speed of light, what condition on ρ and/or p will assure that $T^{00} > 0$. This is called the *null energy condition*.
 - (b) What condition on ρ and/or p will assure that $T^{00} > 0$ if the fluid is at rest (this is trivial)? Argue that if both the condition from (a) and (b) are true, then $T^{00} > 0$ at *all* speeds. This is called the *weak energy condition*.
 - (c) There is a special relationship between ρ and p that makes the stress-energy tensor independent of the fluid's "speed". What is that relationship (it's easier than it sounds). Vacuum energy density acts this way.
 - (d) Radiation has the property that the trace of the stress energy tensor $T = \eta_{\mu\nu}T^{\mu\nu} = 0$. What is the relationship between ρ and/or p in this case?
- 11. The electromagnetic field produces a stress-energy tensor $T^{\mu\nu} = \varepsilon_0 \left(F^{\mu\lambda} F^{\nu}{}_{\lambda} \frac{1}{4} \eta^{\mu\nu} F^{\lambda\sigma} F_{\lambda\sigma} \right).$
 - (a) Show that for this stress-energy tensor, the trace is always $T = \eta_{\mu\nu} T^{\mu\nu} = 0$.
 - (b) Suppose you have a uniform electric field in the *x*-direction, $F^{01} = -F^{10} = E$. Find all non-vanishing components of the stress-energy tensor in this case.