Physics 780 – General Relativity Homework C

- 7. Each of the following formulas is true for an appropriate value of k in flat 4D-spacetime. In each case, find k
 - (a) $\eta_{\mu\nu}\eta^{\mu\nu} = k$
 - (b) $\eta_{\mu\nu}\eta_{\alpha\beta}\eta^{\mu\gamma}\eta^{\beta\alpha}\delta^{\nu}_{\gamma} = k$

(c)
$$\tilde{\varepsilon}_{\mu\nu\alpha\beta} = k\tilde{\varepsilon}^{\mu\nu\alpha}$$

- (d) $\tilde{\varepsilon}_{\mu\nu\alpha\beta}\tilde{\varepsilon}^{\mu\nu\alpha\beta} = k$
- (e) $\tilde{\varepsilon}_{\mu\nu\alpha\beta}\eta^{\mu\nu} = k\eta_{\alpha\beta}$
- 8. This problem has to do with Maxwell's equations
 - (a) Show that Maxwell's first equation, $\partial_{\nu}F^{\mu\nu} = J^{\mu}/\varepsilon_0$, automatically assures that current is conserved, $\partial_{\mu}J^{\mu} = 0$.
 - (b) It is common to write the electromagnetic field tensor in the form $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$, where A_{μ} is the four-vector potential. Show that if you do this then the second Maxwell equation is automatically satisfied.
- 9. A particle of charge q and mass m is initially moving with velocity $\mathbf{v} = (v_1, 0, v_2)$. It is placed in a region with a uniform magnetic field in the z-direction $B_3 = B$.
 - (a) What is the initial four-velocity $U^{\mu}(\tau=0)$?
 - (b) Write down differential equations for all four components of the four velocity $dU^{\mu}/d\tau$. Solve these equations, subject to the initial conditions, for U^0 and U^3 .
 - (c) Find a second order differential equation for U^2 of the form $\frac{d^2}{d\tau^2}U^2 = -\omega^2 U^2$. What is ω ?
 - (d) Solve the equation for part (c), subject to the initial conditions. There should be one unknown parameter describing U^2 at this point.
 - (e) Using the formula for $dU^2/d\tau$, find a formula for U^1 . By matching the initial conditions, you should now have all components of U^{μ} as a function of τ .