Physics 780 - General Relativity

Homework B

5. We can define the four-acceleration as $A^{\mu}=\frac{d}{d \tau} U^{\mu}=\frac{d^{2}}{d \tau^{2}} x^{\mu}$.
(a) Show that if you are in a frame such that a particle is momentarily at rest, so $U^{\mu}\left(\tau_{0}\right)=(1,0,0,0)$, then $\eta_{\mu \nu} A^{\mu} A^{\nu}=\mathbf{a}^{2}$, where \mathbf{a} is the ordinary acceleration $\mathbf{a}=\frac{d \mathbf{v}}{d t}$. Since $a=\sqrt{\eta_{\mu \nu} A^{\mu} A^{\nu}}$ is Lorentz invariant, this must be the magnitude of the acceleration as experienced by an object with arbitrary velocity U^{μ}
(b) An object moves according to the formula $x=\sqrt{b^{2}+t^{2}}-b, y=z=0$. Rewrite these in terms of proper time τ (hint: this was almost done for you in class), then work out the four-velocity $U^{\mu}(\tau)$ the four-acceleration $A^{\mu}(\tau)$ and find a formula for the proper acceleration a, which should be constant.
(c) Determine the value of b in years (or light-years) if $a=g=9.80 \mathrm{~m} / \mathrm{s}^{2}$.
(d) If you leave Earth, starting at rest, and accelerate at g, how much proper time in years would it take you go get to α-Centauri (4.3 $c \cdot \mathrm{yr}$), the center of the galaxy ($27,000 c \cdot \mathrm{yr}$) and the approximate edge of the Universe $\left(2 \times 10^{10} c\right.$.yr).
6. The electromagnetic field tensor $F_{\mu \nu}$ is given by equation (1.69). If the fields are given by the three components of \mathbf{E} and \mathbf{B}, what would be the new values of the electric and magnetic fields \mathbf{E}^{\prime} and \mathbf{B}^{\prime} if you
(a) Performed a rotation by an angle θ around the z-axis,
(b) Perform a boost in the x-direction by rapidity ϕ.

The corresponding inverse Lorentz matrices in each case are given below. Note that because $F_{\mu \nu}$ is anti-symmetric, you can calculate just six components of $F_{\mu \nu}$ to get \mathbf{E}^{\prime} and \mathbf{B}^{\prime}.

$$
\Lambda^{-1}(\theta)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \Lambda^{-1}(\phi)=\left(\begin{array}{cccc}
\cosh \phi & \sinh \phi & 0 & 0 \\
\sinh \phi & \cosh \phi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

