Physics 780 - General Relativity

Homework A

1. Using the convention that $c=1$, rewrite the following quantities (on personal ones, you can lie, but your lie has to be plausible)
(a) Your age in m
(b) The length of your foot in ns
(c) The Schwarzschild radius of the Sun, given by $2 G M$, in km
2. A particle moves in a helical path given by $(x, y, z)=(R \cos (\omega t), R \sin (\omega t), v t)$. Find a relation between the coordinate time t and the proper time τ, and then rewrite all four coordinates in terms of τ.
3. A general Lorentz transformation is a 4×4 matrix satisfying $\eta_{\mu \nu}=\eta_{\alpha \beta} \Lambda^{\alpha}{ }_{\mu} \Lambda_{\nu}^{\beta}$, which can be written in matrix form as $\eta=\Lambda^{T} \eta \Lambda$
(a) Using the formulas $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ and $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$, show that $\operatorname{det}(\Lambda)= \pm 1$.
(b) Using this equation in the case $\mu=v=0$, show that $\Lambda_{0}^{0} \geq 1$ or $\Lambda_{0}^{0} \leq-1$.
(c) Argue that if you start with the identity Lorentz transformation ($\Lambda=\mathbf{1}$), and then continuously change it, by making small rotations or boosts, the sign of $\operatorname{det}(\Lambda)$ and Λ_{0}^{0} will never change. Call these Lorentz transformations proper Lorentz transformation.
(d) Show that time reversal $\Lambda=\mathcal{T}=\operatorname{diag}(-1,1,1,1)$ parity, $\Lambda=\mathcal{P}=\operatorname{diag}(1,-1,-1,-1)$, and the combination $\Lambda=\mathcal{P} \mathcal{I}$ are improper Lorentz transformations.
4. The concept of future and past do not work exactly the same in special relativity, but some things are the same. We will say that a point x^{μ} is in the absolute future of another point y^{μ} if $x^{0}-y^{0}>|\mathbf{x}-\mathbf{y}|$. In standard physics, the future of the future is the future. Show that in relativity, if x is in the future of y and y is in the future of z, then x is in the future of z. You may want to look up the triangle inequality.
