Physics 780 – General Relativity Homework A

- 1. Using the convention that c = 1, rewrite the following quantities (on personal ones, you can lie, but your lie has to be plausible)
 - (a) Your age in m
 - (b) The length of your foot in ns
 - (c) The Schwarzschild radius of the Sun, given by 2GM, in km
- 2. A particle moves in a helical path given by $(x, y, z) = (R \cos(\omega t), R \sin(\omega t), vt)$. Find a relation between the coordinate time *t* and the proper time τ , and then rewrite all four coordinates in terms of τ .
- 3. A general Lorentz transformation is a 4×4 matrix satisfying $\eta_{\mu\nu} = \eta_{\alpha\beta} \Lambda^{\alpha}{}_{\mu} \Lambda^{\beta}{}_{\nu}$, which can be written in matrix form as $\eta = \Lambda^{T} \eta \Lambda$
 - (a) Using the formulas $\det(AB) = \det(A)\det(B)$ and $\det(A^T) = \det(A)$, show that $\det(\Lambda) = \pm 1$.
 - (b) Using this equation in the case $\mu = \nu = 0$, show that $\Lambda_0^0 \ge 1$ or $\Lambda_0^0 \le -1$.
 - (c) Argue that if you start with the identity Lorentz transformation ($\Lambda = 1$), and then continuously change it, by making small rotations or boosts, the sign of det(Λ) and Λ_0^0 will never change. Call these Lorentz transformations *proper* Lorentz transformation.
 - (d) Show that time reversal $\Lambda = \mathcal{T} = \text{diag}(-1,1,1,1)$ parity, $\Lambda = \mathcal{P} = \text{diag}(1,-1,-1,-1)$, and the combination $\Lambda = \mathcal{PT}$ are improper Lorentz transformations.
- 4. The concept of future and past do not work exactly the same in special relativity, but some things are the same. We will say that a point x^{μ} is in the absolute future of another point y^{μ} if $x^0 y^0 > |\mathbf{x} \mathbf{y}|$. In standard physics, the future of the future is the future. Show that in relativity, if x is in the future of y and y is in the future of z, then x is in the future of z. You may want to look up the triangle inequality.