
Physics 712 
Chapter 2 Problems 

 
3. [15] Consider a square of side a with  = 0 on three sides and   = V on the surface y = 

a in two dimensions.  Our goal is to compute the potential everywhere, and particularly 
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the form of the functions  nA y ?  By matching appropriate boundary conditions, 

determine any unknown coefficients, and find  ,x y  as an infinite sum.  Sum it 

numerically to find  1 1
4 2,a a .  Compare your results with the results of problem 1.7. 

 
 We want the Laplacian to vanish, so this implies 
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Since the sine functions are an independent set of functions, the only way this can vanish is if the 
expression in square brackets vanishes.  We therefore have 
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This has general solution  

  .ny a ny a
n n nA y e e      

However, this function must also vanish at y = 0, so this implies n n   , and our function is 
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 We now start working on the constants n .  We note that if we set y = a, we must have 
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If we multiply both sides of this equation by  sin mx a  and integrate over x, we can use the 

fact that the functions  sin mx a  are orthogonal to find 
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The expression in square brackets vanishes for m even and is 2 for m odd. Substituting this back 
into our expression for the potential, we have 
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 We have been asked to compute  1 1
4 2,a a , which is therefore 

         
 

1
41 1 1 1

4 2 4 2 1
 odd  odd 2

2sin4
, sin sinh ,

sinh coshn n

nV
a a n n V

n n n n


 

   

 

     

where at the last step we used the double angle formula  sinh 2 2sinh cosh    to simplify a 

bit.  We now let Maple do the sum numerically for us: 
 
> add(evalf(sin(Pi*(2*n-1)/4)/cosh(Pi*(n-1/2))/Pi/(n-1/2)), 
  n=1..6); 
 
We find  1 1

4 2, 0.1820283319a a V  , adding just six terms.  In problem 1.7, our best estimate 

was  1 1
4 2, 0.182027585a a V  , which is correct to about six digits, so I was a bit optimistic 

there when I claimed seven digits. 
 
 


