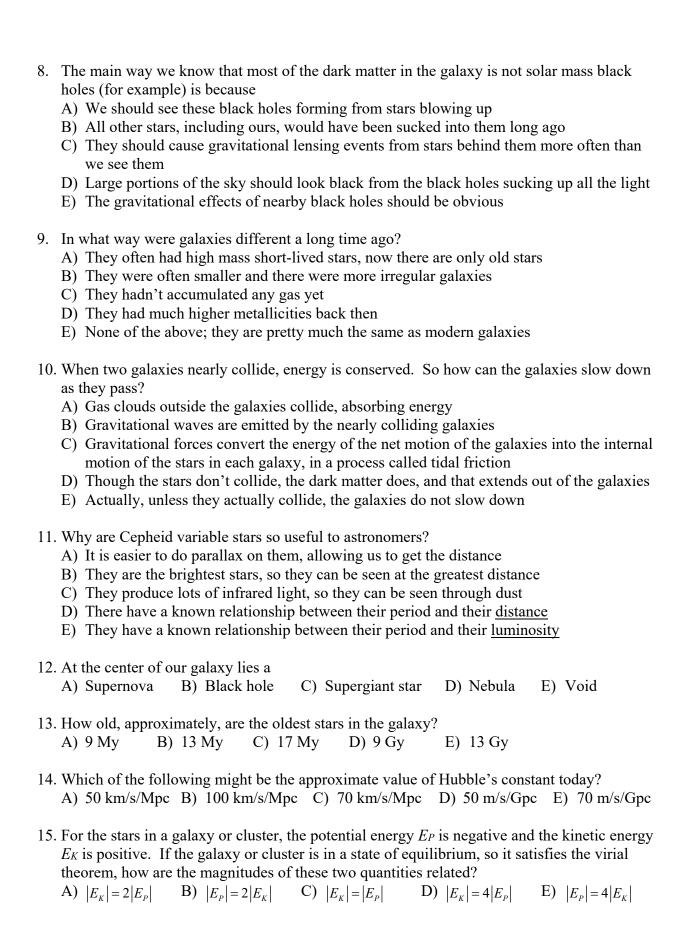
| Name |  |  |  |  |
|------|--|--|--|--|
|      |  |  |  |  |

## Midterm Exam October 18, 2019

This test consists of three parts. For the first and second parts, you may write your answers directly on the exam, if you wish. For the other parts, use separate sheets of paper.

**Part I:** Multiple Choice Everyone: Answer all questions. For each question, choose the best answer (2 points each)

A) Hottest


B) Coolest

| Fo | r each question, choose the best answer (2 points each)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1. | <ul> <li>Type Ia supernovae became a popular distance method for measuring distances in the late 20<sup>th</sup> century. Why don't we just always use it to measure distances?</li> <li>A) These supernovae are not bright enough to measure at large distances</li> <li>B) Light extinction due to dust causes huge problems, since these mostly occur in the plane of our galaxy</li> <li>C) Parallax is a much more accurate way to measure the distance to typical galaxies</li> <li>D) Their enormous gravitation causes the light to be red-shifted, distorting our views</li> <li>E) These events are rare, so you can't automatically use it for most objects</li> </ul> |  |  |  |  |
| 2. | Which of the elements iron (Fe), carbon (C), neon (Ne), and helium (He), according to astronomers, contributes to the metallicity of a star?  A) None of them B) Fe only C) Fe and C D) Fe, C, and Ne E) All of them                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 3. | <ul> <li>Why do clusters of stars tend to get redder as they age?</li> <li>A) Dust accumulates around the cluster, reddening it</li> <li>B) The cluster moves away from us, and the reddening is due to red shift</li> <li>C) Blue supergiant stars turn red after a few billion years</li> <li>D) All the high mass (blueish) stars are dead, and the brightest remaining stars are red giants</li> <li>E) Red stars get gradually brighten over time, while blue stars gradually get dimmer</li> </ul>                                                                                                                                                                          |  |  |  |  |
| 4. | The galaxy pictured at right is approximately what galaxy classification? A) E0 B) E7 C) SAa D) SBd E) Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 5. | The name of the galaxy we live in is A) Milky Way B) Coma C) Virgo D) Andromeda E) Norma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 6. | Approximately what percent of our galaxy's mass is in the form of dark matter?  A) 1% B) 15% C) 50% D) 85% E) 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 7. | If an astronomer says they are studying O and B stars, what types of stars are they studying?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |

C) Most luminous

D) Least luminous

E) Brightest



| Part II: Shor | t Answer PHY 310: Choose three or     | f the four questions I | <u>PHY 610</u> : A1 | iswer all four |
|---------------|---------------------------------------|------------------------|---------------------|----------------|
| questions.    | Write 2-4 sentences about each of the | he following [10 each  | h]                  |                |

16. Galaxy collisions are common, and yet the stars within them rarely collide. Give at least three reasons why galaxy collisions still have significant effects.

17. Astronomers think that radio galaxies, radio quasars, and blazars may all possibly be the same thing. Explain how this might be possible. A simple sketch might help.

18. Explain qualitatively how we can estimate the total mass of a cluster of galaxies, including all the dark matter, etc.

19. Hubble's Law states that the distance and velocity of galaxies are given by  $v = H_0 d$ . Explain why this formula is imprecise (a) at small distances, and (b) at large distances.

## Physical Constant $k_B = 1.381 \times 10^{-23} \text{ J/K}$ $\hbar = 1.055 \times 10^{-34} \text{ J} \cdot \text{s}$ $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$ $G = 6.673 \times 10^{-11} \text{ m}^3 / \text{kg/s}^2$

Units  
pc = 
$$3.086 \times 10^{16}$$
 m  
 $M_{\odot} = 1.989 \times 10^{30}$  kg  
y =  $3.156 \times 10^{7}$  s  
rad =  $206, 265''$ 

Distance and
Magnitudes
$$d = 10^{1 + \frac{m - M}{5}} \text{ pc}$$

$$m - M = 5 \log(d) - 5$$
Black Body Radiation

 $u = \frac{\pi^2}{15} \frac{\left(k_B T\right)^4}{\left(\hbar c\right)^3}$ 

 $\lambda_{\text{max}}T = 0.00290 \text{ m} \cdot \text{K}$ 

Galactic Orbits
$$\Omega = \frac{V_0}{R_0}$$

$$\kappa^2 = \frac{2V_0^2}{R_0^2} + \frac{1}{R_0} \frac{d}{dR} V^2 \Big|_{R_0}$$

$$\nu = \sqrt{4\pi G \rho_0}$$
Planetary Nebula
$$M^* = -4.47$$

## **Part III: Calculation:**

<u>PHY 310</u>: Choose four of the five problems PHY 610: Do all five problems.

For each of the following problems, give the answer, explaining your work. [20 points each]

20. One important event in the early universe is called *recombination*, and occurred when the temperature of the universe was approximately T = 2970 K. The universe was filled with almost perfect black body radiation at this time.

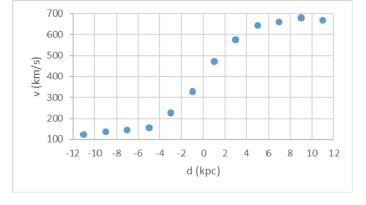
(a) Find the energy density of the blackbody radiation at this time in J/m<sup>3</sup>.

(b) Find the wavelength where the blackbody radiation was strongest at this time, in nm.

(c) Find the energy for a single photon with the wavelength you found in part (b).

(d) Using the energy density you found in part (a) and the energy you found in part (c), estimate the number of photons per unit volume (in m<sup>-3</sup>) at this time.

21. Barnard's Star has a parallax of p=0.547'' and is moving with proper motion  $\mu_x=-0.803''/y$  and  $\mu_y=10.36''/y$ . The Lyman- $\alpha$  line, normally at a wavelength of  $\lambda_0=121.567$  nm, is detected from this star at  $\lambda=121.522$  nm.


(a) What is the distance to Barnard's Star in pc?

(b) What is the velocity perpendicular to our line of sight  $v_x$  and  $v_y$  compared to us in km/s?

(c) What is the radial velocity  $v_r$  of the star compared to us in km/s?

22. A spiral galaxies has stars in various places measured compared to us via Doppler shift. The resulting velocities are as plotted at right.

(a) Estimate the rotational velocities (ignoring the net motion of the galaxy) at distances of 5 kpc and 10 kpc from the center of the galaxy.



(b) Assume the mass of the galaxy is distributed in a spherical

symmetric manner. What is the total mass of the galaxy contained within spheres of radius 5 kpc and 10 kpc of the center of the galaxy?

(c) Does this galaxy show evidence for dark matter?

- 23. A group of galaxies has their brightest planetary nebulas (PN) and brightest red giants (RG) apparent magnitudes measured, as shown at right.
  - (a) For galaxies A, B, and C, estimate the distance using planetary nebulae.
  - (b) For the same three galaxies, find the absolute magnitude of the red giant stars.
  - (c) Are the brightest red giants a decent standard candle? Why or why not?

| Gal | m     | m     | d    | M   |
|-----|-------|-------|------|-----|
| -   | (PN)  | (RG)  | (Mpc | (RG |
| axy |       |       | )    | )   |
| A   | 20.21 | 20.68 |      |     |
| В   | 22.30 | 22.76 |      |     |
| С   | 24.86 | 25.34 |      |     |
| D   | ?     | 21.63 |      |     |

- (d) Galaxy D hasn't had its planetary nebulas measured. Estimate the distance anyway.
- 24. A long time ago in a faraway spiral galaxy, the star system Tatoo orbits at an average distance of  $R_0 = 12.00$  kpc from the center of its galaxy. The velocity rotation curve for the galaxy fits the formula  $V^2 = AR$ , where  $A = 8,800 \text{ km}^2\text{s}^{-2}\text{kpc}^{-1}$ . The mass density in the neighborhood of Tatoo is  $\rho = 0.132 \ M_{\odot}\text{pc}^{-3}$ .
  - (a) What is the orbital velocity  $V_0$  at the distance  $R_0$ ? What is the angular velocity  $\Omega$  at this radius in  $My^{-1}$ , and what is the period  $T_{\Omega}$  to complete one orbit?
  - (b) Tatoo doesn't stay exactly at  $R_0$ , but also wanders in and out compared to the center of the galaxy. What is the frequency  $\kappa$  for these epicycles in  $\mathrm{My}^{-1}$ , and the corresponding period  $T_{\kappa}$ ?