Solution Set X

1. [10] One of the least luminous stars is the obscure red dwarf 2MASS J0523-1403. It has a luminosity of $L=1.26 \times 10^{-4} L_{\odot}$ and a mass probably around $M=0.080 M_{\odot}$.
(a) Assuming the star is undergoing nuclear fusion, $4^{1} \mathrm{H}+2 e^{-} \rightarrow{ }^{4} \mathrm{He}+2 v+26.73 \mathrm{MeV}$, what mass of ${ }^{\mathbf{1}} \mathrm{H}$ is being consumed every second to keep this star powered?

The total power is

$$
L=1.26 \times 10^{-4} L_{\odot}=\left(1.26 \times 10^{-4}\right)\left(3.828 \times 10^{26} \mathrm{~W}\right)=4.823 \times 10^{22} \mathrm{~W}
$$

Each interaction results in 26.73 MeV of energy, so to produce this many watts would require a rate for this reaction of

$$
\Gamma=\frac{L}{E}=\frac{4.823 \times 10^{22} \mathrm{~W}}{\left(26.73 \times 10^{6} \mathrm{eV}\right)\left(1.602 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}=1.126 \times 10^{34} \mathrm{~s}^{-1}
$$

The mass used up is essentially the mass of four hydrogen atoms, which have a mass of $1.6727 \times 10^{-27} \mathrm{~kg}$, so the rate at which mass is consumed is

$$
\frac{d M}{d t}=4 \Gamma m_{H}=4\left(1.126 \times 10^{34} \mathrm{~s}^{-1}\right)\left(1.6727 \times 10^{-27} \mathrm{~kg}\right)=7.535 \times 10^{7} \mathrm{~kg} / \mathrm{s}
$$

(b) Assuming the star has constant luminosity and starts as $\mathbf{7 5 \%}{ }^{\mathbf{1}} \mathbf{H}$, in how many years will it run out of fuel?

This is just the mass divided by the mass consumption rate, or

$$
t=\frac{M}{d M / d t}=\frac{0.75(0.080)\left(1.989 \times 10^{30} \mathrm{~kg}\right)}{7.535 \times 10^{7} \mathrm{~kg} / \mathrm{s}}=\frac{1.584 \times 10^{21} \mathrm{~s}}{3.156 \times 10^{7} \mathrm{~s} / \mathrm{yr}}=5.02 \times 10^{13} \mathrm{yr}
$$

This fits rather well with our estimate of $10^{14} \mathrm{yr}$ from class.
2. [20] Black holes evaporate according to formulas provided in the lectures. Find each of the following for a black hole of mass (i) $10 M_{\odot}$ and (ii) $10^{11} M_{\odot}$:
(a) The Schwarzschild radius in m.

The Schwarzschild radius is just $R_{S}=2 G M / c^{2}$, so we have

$$
\begin{aligned}
& R_{*}=\frac{2\left(6.674 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\right)(10)\left(1.989 \times 10^{30} \mathrm{~kg}\right)}{\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}=2.954 \times 10^{4} \mathrm{~m} \\
& R_{g}=\frac{2\left(6.674 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\right)\left(10^{11}\right)\left(1.989 \times 10^{30} \mathrm{~kg}\right)}{\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}=2.954 \times 10^{14} \mathrm{~m}
\end{aligned}
$$

(b) The Hawking temperature in K.

The Hawking temperature is given by $k_{B} T=\hbar c /\left(4 \pi R_{S}\right)$, so we have

$$
\begin{aligned}
& T_{*}=\frac{\hbar c}{4 \pi k_{B} R_{s}}=\frac{1.973 \times 10^{-7} \mathrm{eV} \cdot \mathrm{~m}}{4 \pi\left(8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)\left(2.954 \times 10^{4} \mathrm{~m}\right)}=6.169 \times 10^{-9} \mathrm{~K} \\
& T_{g}=\frac{\hbar c}{4 \pi k_{B} R_{s}}=\frac{1.973 \times 10^{-7} \mathrm{eV} \cdot \mathrm{~m}}{4 \pi\left(8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)\left(2.954 \times 10^{14} \mathrm{~m}\right)}=6.169 \times 10^{-19} \mathrm{~K}
\end{aligned}
$$

These are very cold.

(c) The luminosity in W .

We simply use the formula we would normally use for the luminosity of a star, namely

$$
\begin{aligned}
L_{*} & =4 \pi \sigma R_{*}^{2} T_{*}^{4}=4 \pi\left(5.670 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}^{4}\right)\left(2.954 \times 10^{4} \mathrm{~m}\right)^{2}\left(6.169 \times 10^{-9} \mathrm{~K}\right)^{4} \\
& =9.005 \times 10^{-31} \mathrm{~W}, \\
L_{g} & =4 \pi \sigma R_{*}^{2} T_{*}^{4}=4 \pi\left(5.670 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}^{4}\right)\left(2.954 \times 10^{16} \mathrm{~m}\right)^{2}\left(6.169 \times 10^{-19} \mathrm{~K}\right)^{4} \\
& =9.005 \times 10^{-51} \mathrm{~W} .
\end{aligned}
$$

(d) The approximate time in $\mathbf{y r}$ for the black hole's energy $\mathbf{M c}^{\mathbf{2}}$ to be completely evaporated.

We simply divide the starting energy by the rate of energy loss to yield

$$
\begin{aligned}
& t_{*}=\frac{M_{*} c^{2}}{L_{*}}=\frac{10\left(1.989 \times 10^{30} \mathrm{~kg}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}{9.005 \times 10^{-31} \mathrm{~W}}=\frac{1.985 \times 10^{78} \mathrm{~s}}{3.156 \times 10^{7} \mathrm{~s} / \mathrm{yr}}=6.29 \times 10^{70} \mathrm{yr}, \\
& t_{g}=\frac{M_{g} c^{2}}{L_{g}}=\frac{10^{11}\left(1.989 \times 10^{30} \mathrm{~kg}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}{9.005 \times 10^{-51} \mathrm{~W}}=\frac{1.985 \times 10^{108} \mathrm{~s}}{3.156 \times 10^{7} \mathrm{~s} / \mathrm{yr}}=6.29 \times 10^{100} \mathrm{yr},
\end{aligned}
$$

Graduate Problems: There are no graduate problems for this homework.

