Physics 310/610 – Cosmology Solution Set W

- 1. [15] This question concerns the relative strength of electric and gravitational forces.
 - (a) Write a formula for the gravitational force between two electrons. Find the ratio of the gravitational force to the Coulomb force, $F = ke^2/r^2$, where k is Coulomb's constant and e is the electron charge (which you can go look up). Show that the ratio is constant and evaluate it.

The gravitational force between two particles is $F_g = Gm^2/r^2$, and the ratio of these forces is

$$\frac{F_g}{F_E} = \frac{Gm^2/r^2}{ke^2/r^2} = \frac{Gm^2}{ke^2} = \frac{\left(6.674 \times 10^{-11} \text{ m}^3/\text{kg/s}^2\right) \left(9.1094 \times 10^{-31} \text{ kg}\right)^2}{\left(8.9876 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2\right) \left(1.602 \times 10^{-19} \text{ C}\right)^2} = 2.40 \times 10^{-43}$$

As we can see, at conventional energies (such as the electron mass), gravity is far weaker than other forces such as the electric force.

(b) For very energetic particles, the mass *m* for the electron is replaced by E/c^2 . For what energy *E* in GeV will the gravitational force between a pair of electrons be as strong as the electric force?

The electric force does not change, because it depends only on the electric charge. The two forces will match when

$$1 = \frac{F_g}{F_E} = \frac{Gm^2/r^2}{ke^2/r^2} = \frac{G(E/c^2)^2}{ke^2} = \frac{GE^2}{ke^2c^4},$$

$$E^2 = \frac{ke^2c^4}{G} = \frac{\left(8.9876 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2\right) \left(1.602 \times 10^{-19} \text{ C}\right)^2 \left(2.998 \times 10^8 \text{ m/s}\right)^4}{6.674 \times 10^{-11} \text{ m}^3/\text{kg/s}^2} = 2.792 \times 10^{16} \text{ J}^2,$$

$$E = \sqrt{2.792 \times 10^{16} \text{ J}^2} = 1.671 \times 10^8 \text{ J} = \frac{1.671 \times 10^8 \text{ J}}{1.602 \times 10^{-19} \text{ eV/J}} = 1.043 \times 10^{27} \text{ eV} = 1.043 \times 10^{18} \text{ GeV}.$$

(c) A typical energy of a particle at temperature T is given by $3k_BT$. What is k_BT when gravity is the same strength as the other forces? How old is the universe at this time? Assume the universe is radiation dominated at this time, with $g_{eff} = 200$ for definiteness.

Obviously, $k_B T = \frac{1}{3}E = 3.48 \times 10^{17}$ GeV. We then simply substitute this into the formula for the age of the universe.

$$t = \frac{2.42 \text{ s}}{\sqrt{g_{\text{eff}}}} \left(\frac{\text{MeV}}{k_B T}\right)^2 = \frac{2.42 \text{ s}}{\sqrt{200}} \left(\frac{\text{MeV}}{3.48 \times 10^{20} \text{ MeV}}\right)^2 = 1.41 \times 10^{-42} \text{ s}$$

- 2. [15] We have recently been discussing things like the *Planck mass*, the *Planck time*, and the *Planck length*. What are all these quantities? Any quantum theory of gravity must involve the speed of light c, the reduced Planck constant \hbar and the gravitational constant G. Start by looking up the units of each of these quantities (unless you know them).
 - (a) Using only dimensional analysis, find expressions for the Planck time t_P , the Planck distance l_P and the Planck mass m_P , where in each case the formula will be of the form $x_P = G^{\alpha} \hbar^{\beta} c^{\gamma}$, where α , β , and γ are simple rational numbers.

The three constants are

$$G = 6.674 \times 10^{-11} \text{ m}^3/\text{kg/s}^2$$
, $\hbar = 1.0546 \times 10^{-34} \text{ kg} \cdot \text{m}^2/\text{s}$, $c = 2.998 \times 10^8 \text{ m/s}$.

We first note that if we want kg to *not* appear in an expression, we had better have G and \hbar to the same power, so that kg will cancel. Noting that $G\hbar \sim m^5/s^3$, we see that we can eliminate seconds by dividing by c^3 , so that $G\hbar/c^3 \sim m^2$. The square root of this must be the Planck length, $l_P = \sqrt{G\hbar/c^3}$. Dividing by one more factor of c turns meters into seconds, so we have $t_P = \sqrt{G\hbar/c^3}/c = \sqrt{G\hbar/c^5}$. It is then pretty easy to get units that look like kilograms; for example, $\hbar t_P/l_P^2 \sim \text{kg}$, we must have $m_P = \hbar t_P/l_P^2$. Putting it all together, we have

$$l_{P} = \sqrt{\frac{G\hbar}{c^{3}}}, \quad t_{P} = \sqrt{\frac{G\hbar}{c^{5}}}, \quad m_{P} = \frac{\hbar t_{P}}{l_{P}^{2}} = \hbar \sqrt{\frac{G\hbar}{c^{5}}} \frac{c^{3}}{G\hbar} = \sqrt{\frac{\hbar c}{G}}.$$

(b) Evaluate each of the quantities in part (a) in standard SI units.

We simply plug into the previous formula

$$\begin{split} l_{P} &= \sqrt{\frac{\left(6.674 \times 10^{-11} \text{ m}^{3}/\text{kg/s}^{2}\right)\left(1.0546 \times 10^{-34} \text{ kg} \cdot \text{m}^{2}/\text{s}\right)}{\left(2.998 \times 10^{8} \text{ m/s}\right)^{3}}} = 1.616 \times 10^{-35} \text{ m}, \\ t_{P} &= \sqrt{\frac{\left(6.674 \times 10^{-11} \text{ m}^{3}/\text{kg/s}^{2}\right)\left(1.0546 \times 10^{-34} \text{ kg} \cdot \text{m}^{2}/\text{s}\right)}{\left(2.998 \times 10^{8} \text{ m/s}\right)^{5}}} = 5.39 \times 10^{-44} \text{ s}, \\ m_{P} &= \sqrt{\frac{\left(1.0546 \times 10^{-34} \text{ kg} \cdot \text{m}^{2}/\text{s}\right)\left(2.998 \times 10^{8} \text{ m/s}\right)}{6.674 \times 10^{-11} \text{ m}^{3}/\text{kg/s}^{2}}} = 2.176 \times 10^{-8} \text{ kg}. \end{split}$$

(c) Using simple combinations from parts (a) and (b), find the Planck energy E_P in both J and GeV, and find the Planck mass density ρ_P in kg/m³. Naively, the mass density of empty space should be about ρ_P . What is the ratio of ρ_P to the actual mass density of empty space, $\rho_{\Lambda} = 5.65 \times 10^{-27} \text{ kg/m}^3$?

The Planck energy is just given by $E_p = m_p c^2$, so we have

$$E_{P} = m_{P}c^{2} = (2.176 \times 10^{-8} \text{ kg})(2.998 \times 10^{8} \text{ m/s})^{2} = 1.957 \times 10^{9} \text{ J} = 1.957 \text{ GJ}$$
$$= \frac{1.956 \times 10^{9} \text{ J}}{1.602 \times 10^{-19} \text{ eV/J}} = 1.221 \times 10^{28} \text{ eV} = 1.221 \times 10^{19} \text{ GeV}.$$

The Planck mass density would be

$$\rho_{P} = \frac{m_{P}}{l_{P}^{3}} = \frac{2.176 \times 10^{-8} \text{ kg}}{\left(1.616 \times 10^{-35} \text{ m}\right)^{3}} = 5.156 \times 10^{96} \text{ kg/m}^{3} ,$$
$$\frac{\rho_{P}}{\rho_{\Lambda}} = \frac{5.156 \times 10^{96} \text{ kg/m}^{3}}{5.65 \times 10^{-27} \text{ kg/m}^{3}} = 9.13 \times 10^{122} .$$

As you can see, these numbers are rather different.

(d) Suppose it actually takes an energy E_p to create a universe. Given that the cost of electricity in the United States in 2023 is about \$0.169 per kilowatt hour, how much would it cost you to make a universe?

$$\cot = (unit) \cdot (\cot/unit) = (1.957 \times 10^9 \text{ J}) \cdot \frac{\$0.169}{\text{kW} \cdot \text{hr}} \cdot \frac{\text{hr}}{3600 \text{ s}} \cdot \frac{1 \text{ kW}}{1000 \text{ W}} \cdot \frac{\text{W}}{\text{J/s}} = \$91.87.$$

Something to think about when trying to come up with that special Christmas gift. How about giving someone a whole universe of their own?