
Physics 310/610 – Cosmology 
Solution Set P 

 
1. [10] In class we showed that the average photon, at present, does not hit any electrons. 

In this problem, you will determine if the average electron is hit by a photon. The cross 
section is still the Thomson cross-section given in class. The density is the density of 
photons, since that’s what an electron is trying to hit. The relative speed is still c. In the 
current age of the universe, how many collisions will a free electron have? Will a typical 
electron have been hit by at least one photon? 

 
 The rate for collisions is given by ( )n vσΓ = ∆ . The cross section and relative velocity 
are the same, and we can get the density from the previous problem set.  We have 

( )( )( )8 3 29 2 8 12 14.108 10  m 6.652 10  m 2.998 10  m/s 8.19 10  s− − − −Γ = × × × = ×  

It is clear that this is a rare event.  However, the universe is old. Multiplying by the actual age of 
the universe, we find 

( )( )( )12 1 9 7 6
0 8.19 10  s 13.8 10  y 3.156 10  s/y 3.57 10 .t − −Γ = × × × = ×  

Obviously, each electron will have undergone many scatterings with photons over the age of the 
universe. In the past, when the density was higher, the number of collisions would have been 
many more. 
 
 
2. [10] For each of the following, estimate the thermal energy kBT of the universe. Use 

eff 3.36g = . 
(a) When primordial tritium decays (t = 17.8 y). 

 
 Since this is early in the universe (well before the matter dominated era), we use the 
formulas for age vs. temperature in the radiation dominated universe.  We first convert the time 
to seconds, 

( )( )7 817.8 y 3.156 10  s/y 5.62 10  s.t = × = ×  

We now take our equation for age and solve it for the temperature: 
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Substituting in our age, we find 

( )

1/ 2

5
8

2.42 s MeV 4.85 10  MeV 48.5 eV
5.62 10  s 3.36Bk T −

 
 = = × =
 × 

 

 
(b) When primordial free neutrons decay (t = 886 s). 

 
 We use the same formula: 

( )
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3. [10] For each of the following, find geff , and estimate the age of the universe in seconds.   

(a) [3] At nucleosynthesis, when 80 keVBk T = . 
 
 In class, we said that for temperatures below about 100 keV, we can use eff 3.36g = , so 
we have 
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(b) [3.5] When the thermal energy is the same as the electron rest energy, 2

Bk T mc= . 
All particles are at the same temperature. In addition to photons and neutrinos, 
there are also electrons and positrons (g = 4 extra fermions). 

 
 Since all particles are at the same temperature, 7

eff 8b fg g g= + .  The only boson degrees 
of freedom are the photons with g = 2.  There are three neutrinos plus their anti-neutrinos, which 
contribute g = 6 to the fermions.  There is an additional 4 units coming from the electrons and 
positrons. Therefore 7 7

eff 8 82 10 10.75b fg g g= + = + ⋅ = . The temperature is 
2 0.511 MeVBk T mc= = , so 
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(c) [3.5] At the electroweak scale, 100 GeVBk T = .  At this time, everything is at the 

same temperature, and there are g = 28 total spin states for bosons and g = 90 total 
spin states for fermions. 

 
 We have 7 7

eff 8 828 90 106.75b fg g g= + = + ⋅ = , and therefore 
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This is roughly the highest energy that we have direct experimental understanding of the 
universe, and as you can see, it takes us back to about 23 ps after the Big Bang. 
 
Graduate Problem: Do this problem only if you are in PHY 610. 
 
4. [15] Consider a particle moving at the speed of light in a flat universe, so ds = 0, where 

( ) ( )2 2 2 2 2 2 2 2 2sinds c dt a t dr r d dθ θ φ = − + + +   

 Assume that the particle starts at r = 0 at time t = 0, and travels radially. 
(a) [5] Assume first that the universe is radiation dominated, so that ( ) 1/2a t t∝ .  Show 

that at time t, the distance the particle has traveled ( )d ra t=  is at most rk ct , and 
determine the pure numerical constant kr,, independent of t. 

 
 First we are working on a particle moving radially, so 0d dθ φ= = .  Setting also ds = 0, 
we have ( )2 2 2 2c dt a t dr= .  Taking the positive square root, we have ( )dr dt c a t= .  Since it 
starts at r = 0 at t = 0, we therefore have 

( ) ( )
( )0 0

.
t tdr t cdtr t dt

dt a t
′ ′

′= =
′ ′∫ ∫  

The distance is then ( ) ( )d a t r t= . 

 For ( ) 1/2a t t∝ , we write ( ) 1/2
0a t a t= , and we find 

( ) ( ) ( ) ( )
1/2 1/2 1/2

0 1/2 00 0
0

2 2 .
t t tcdt cdtd a t r t a t a t ct t ct
a t a t

′ ′
′= = = = =

′ ′∫ ∫  

So kr= 2. 
 

(b) [5] Assume second that the universe is matter dominated, so that ( ) 2/3a t t∝ .  Show 
that at time t, the distance the particle has traveled is at most mk ct , and determine 
the pure numerical constant km,, independent of t. 

 
 For ( ) 2/3a t t∝ , we write ( ) 2/3

0a t a t= , and we find 

( ) ( ) ( ) ( )
2/3 2/3 1/3

0 1/2 00 0
0

3 3 .
t t tcdt cdtd a t r t a t a t ct t ct
a t a t

′ ′
′= = = = =

′ ′∫ ∫  

So km= 3. 
 



(c) [5] Assume third that the universe is cosmological constant dominated, so that 
( ) ( )1expa t H t∝ .  Show that in this case, for sufficient time, the distance traveled is 

greater than any multiple of ct. 
 
 For ( ) ( )1expa t H t∝ , we write ( ) ( )0 1expa t a H t= , and we find 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1
0 1 1 1 00 0

0

1
1

exp exp exp
exp

1 exp .

t t tcdt cdtd a t r t a t a H t c H t H H t
a t a H t

c H t
H

−
Λ

Λ

′ ′
 = = = = − − ′ ′

 = − + 

∫ ∫
 

Since exponentials beat all power laws, this at large times will beat all multiples of ct. 


