
Physics 310 – Cosmology 
Solution Set N 

 
1. [20] The density of ordinary matter (baryons), dark matter, radiation, and cosmological 

constant are currently about 
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 The baryons and dark matter scale as 3a− , the radiation as 4a− , and the cosmological 
constant does not scale. 
(a) [5] Note that 1 1a z− ∝ + . Write a simple formula for the total density as a function of 

the red-shift z. 
 
 It is pretty clear that we would have ( )3, 1b d zρ ρ ∝ +  and ( )41r zρ ∝ + , while ρΛ  is 
constant.  Since the factors of z + 1 are just 1 today, it follows that 

( )( ) ( )3 4
0 0 0 01 1b d rz zρ ρ ρ ρ ρΛ= + + + + +  

If we prefer, we can substitute the explicit values from above. 
 

(b) [5] Find the red-shift when the matter ( m b dρ ρ ρ= + ) matched the cosmological 
constant, and when the cosmological constant was only 1% of the matter. 

 
 We want to have ( )( )3

0 0 01b d zρ ρ ρΛ+ + = .  Solving for z, we have 
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So the red-shift when matter stopped dominating the universe was actually very modest.  When 
the cosmological constant was only 1% of the matter, we would have 
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Hence the cosmological constant is relevant at the 1% level only for z < 5.  
 

(c) [5] Recombination (to be studied soon) occurred at 1 1091z + = .  Find the ratio of 
matter to radiation at this time.  Is the cosmological constant important at this time? 

 
 We find 
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So matter still dominated, but only by a factor of five. In fact, if you include neutrinos, the factor 
will be even smaller.  In contrast, we have 
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Clearly, the cosmological constant is irrelevant at this time. 
 
(d) [5] Primordial nucleosynthesis occurred around 83.4 10z = × .  Find the density of 

just the ordinary matter at this red-shift.  Compare to the density of air at standard 
temperature and pressure.  

 
 The density of the ordinary matter would be 

( ) ( )( )33 28 3 8 3
0 1 4.196 10  kg/m 3.4 10 0.0165 kg/m .b b zρ ρ −= + = × × =  

By comparison air at standard temperature and pressure is 1.274 kg/m3.  So the universe was not 
very dense, only 1.3% of the density of air, even back then.  The temperature at the time, 
however, was ( ) 8 8

0 1 3.4 10 2.725 K 9.26 10  KT T z= + = × × = × , or nearly a billion Kelvin. 
 
2. [10] The current age of the universe was found in class, assuming radiation is 

irrelevant, and that 1m ΛΩ +Ω = , was given by 
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(a) [3] Given that x is simply 0x a a= , argue that x corresponds to a simple function of 
the red-shift z.  What must change about the upper limit of integration if we want to 
know the age of the universe t at red-shift z? (only the range of integration changes). 

 
 We have from our notes that ( ) 1

0 1a a z −= + , so it is obvious that ( ) 11x z −= + .  If we 
want to go from the beginning of time ( z = ∞ ), to red-shift z, then the integral must be modified 
to 
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(b) [7] Argue that if z is large, the term 2xΛΩ  is irrelevant.  Based on this, find a 

relationship for the age of the universe t as a function of red-shift z. 
 



 As shown in the previous problem, the contribution of the cosmological constant is less 
than 1% of the contribution of matter for z > 5.  Hence if z > 5, we ignore the 2xΛΩ  term.  We 
then proceed to perform the integration: 
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Graduate Problem: Only do this problem if you are in PHY 610 
 
3. [15] The age at any stage for the universe, assuming it is composed exclusively of matter 

and dark matter, is given by an integral of the form 
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(a) What would be the limits if we want to know how long it takes from now until the 
universe is infinite in size?  Convince yourself that this will take infinite time. 

 
So, since 0x a a= , we have x = 1 now and x = ∞  when the universe gets to infinite size.  
So we have 
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At present, the dark energy dominates the matter, and as x becomes large, we can increasingly 
ignore  m xΩ  compared to 2xΛΩ .  Hence we can approximate 
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So it is indeed infinite. 
 

(b) The formula above assumes that the dark matter does not scale, that is, that 
0aρΛ ∝ .  Suppose instead that naρΛ ∝ , with n a small positive number.  How 

would the integral change? 
 
The formula was derived starting from the Friedman equation for a flat universe, namely 
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The densities today are given by  
2 28 8

0 0 0 03 3,m mG H G Hπ ρ π ρΛ Λ= Ω = Ω  



Assuming these scale as a–3
 and an respectively, we would then have, at arbitrary time, 
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Substituting this into the Friedman equation, we have 
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Now, recalling that 0x a a= , this equation can be rewritten as 
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We then rearrange this as 
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 The limits until the end of the universe from now, as before, will be 1 and ∞, so we have 
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(c) Since dark energy currently dominates, and will do so more in the future, ignore 

m xΩ .  Perform the integral you found in part (b), assuming n is positive. 
 
 This makes the integral pretty easy.  We have 
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(d) We currently have 0.691ΛΩ =  and 1

0 14.4 GyrH − = .  Observation suggests 
0.06 0.16n = − ± .  Assuming 0.10n < , what is the minimum time until the end of the 

universe?  This end is called the “Big Rip.” 
 

 The smaller n is, the longer the time.  Hence the minimum time would be when  
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Hence the Big Rip, if it occurs at all, will be more than one-third of a trillion years in the future. 


