Solution Set M

1. [15] The critical density is the density required to have $\Omega=1$. Assuming Hubble's constant is $H_{0}=67.8 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$,
(a) [7] Find the critical density. Write your answer in $\mathbf{k g} / \mathbf{m}^{\mathbf{3}}$ and in $M_{\odot} / \mathrm{kpc}^{3}$.

The critical density is given by the formula $H_{0}^{2}=\frac{8}{3} \pi G \rho_{c}$. Solving for the critical density, we have

$$
\begin{aligned}
\rho_{c} & =\frac{3 H_{0}^{2}}{8 \pi G}=\frac{3(67.8 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc})^{2}}{8 \pi\left(6.674 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\right)\left(10^{6} \mathrm{pc} / \mathrm{Mpc}\right)^{2}\left(3.086 \times 10^{13} \mathrm{~km} / \mathrm{pc}\right)^{2}} \\
& =8.633 \times 10^{-27} \mathrm{~kg} / \mathrm{m}^{3} .
\end{aligned}
$$

We can write this in $M_{\odot} / \mathrm{kpc}^{3}$ using

$$
\rho_{c}=\frac{\left(8.633 \times 10^{-27} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(3.086 \times 10^{16} \mathrm{~m} / \mathrm{pc}\right)^{3}\left(10^{3} \mathrm{pc} / \mathrm{kpc}\right)^{3}}{\left(1.989 \times 10^{30} \mathrm{~kg} / M_{\odot}\right)}=128 M_{\odot} \mathrm{kpc}^{-3} .
$$

(b) [8] The actual value of Ω for ordinary matter is only $\Omega_{b}=0.0484$. If this is all in the form of hydrogen atoms, what is the number density of hydrogen atoms per cubic meter?

We multiply $\rho_{b}=\Omega_{b} \rho_{c}$ and find

$$
\rho_{b}=\Omega_{b} \rho_{c}=(0.0484)\left(8.633 \times 10^{-27} \mathrm{~kg} / \mathrm{m}^{3}\right)=4.178 \times 10^{-28} \mathrm{~kg} / \mathrm{m}^{3} .
$$

The density will be the mass of hydrogen times the number density, $\rho_{b}=n_{H} m_{H}$. The atomic mass of a hydrogen is 1.00794, which you divide by Avogadgro's number, $N_{A}=6.022 \times 10^{23}$ to give the mass in grams, i.e.,

$$
m_{H}=\frac{1.00794 \mathrm{~g} / \mathrm{mol}}{6.022 \times 10^{23} / \mathrm{mol}}=1.674 \times 10^{-24} \mathrm{~g}=1.674 \times 10^{-27} \mathrm{~kg} .
$$

The number density will therefore be

$$
n_{H}=\frac{\rho_{b}}{m_{H}}=\frac{4.178 \times 10^{-28} \mathrm{~kg} / \mathrm{m}^{3}}{1.674 \times 10^{-27} \mathrm{~kg}}=0.250 \mathrm{~m}^{-3} .
$$

So there is about one hydrogen atom per four cubic meters, or more accurately, one proton or neutron per four cubic meters.
2. [10] We have mostly been neglecting the photons. As we will discover shortly, the universe is filled with electromagnetic radiation at a temperature $T_{r}=2.725 \mathrm{~K}$.
(a) [7] Find the energy density \boldsymbol{u}. Also find the mass density $\rho_{r}=u / c^{2}$.

The energy density is given by the formula

$$
u=\frac{\pi^{2}\left(k_{B} T\right)^{4}}{15(\hbar c)^{3}}=\frac{\pi^{2}\left[\left(1.3807 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(2.725 \mathrm{~K})\right]^{4}}{15\left[\left(1.0546 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\right]^{3}}=4.17 \times 10^{-14} \mathrm{~J} / \mathrm{m}^{3}
$$

We then divide this by c^{2} to get the mass density

$$
\rho_{r}=\frac{u}{c^{2}}=\frac{4.17 \times 10^{-14} \mathrm{~J} / \mathrm{m}^{3}}{\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}=4.642 \times 10^{-31} \mathrm{~kg} / \mathrm{m}^{3}
$$

(b) [3] What is the contribution Ω_{r} to the total energy density of the universe?

To get this, we simply divide this by the critical density found in problem 1. So we have

$$
\Omega_{r}=\frac{\rho_{r}}{\rho_{c}}=\frac{4.642 \times 10^{-31} \mathrm{~kg} / \mathrm{m}^{3}}{8.633 \times 10^{-27} \mathrm{~kg} / \mathrm{m}^{3}}=5.38 \times 10^{-5} .
$$

This is pretty small.
3. [5] In class I claimed that any point on a 3 -sphere of radius a could be written as

$$
x=a \sin \psi \sin \theta \cos \phi, \quad y=a \sin \psi \sin \theta \sin \phi, \quad z=a \sin \psi \cos \theta, \quad w=a \cos \psi
$$

Show that these points do, in fact, constitute a 3-sphere of radius a.
To show this, we simply check that the sum of the distances from the origin equals a^{2}.
We have

$$
\begin{aligned}
s^{2} & =x^{2}+y^{2}+z^{2}+w^{2} \\
& =a^{2} \sin ^{2} \psi \sin ^{2} \theta \cos ^{2} \phi+a^{2} \sin ^{2} \psi \sin ^{2} \theta \sin ^{2} \phi+a^{2} \sin ^{2} \psi \cos ^{2} \theta+a^{2} \cos ^{2} \psi \\
& =a^{2} \sin ^{2} \psi \sin ^{2} \theta\left(\cos ^{2} \phi+\sin ^{2} \phi\right)+a^{2} \sin ^{2} \psi \cos ^{2} \theta+a^{2} \cos ^{2} \psi \\
& =a^{2} \sin ^{2} \psi\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+a^{2} \cos ^{2} \psi \\
& =a^{2} \sin ^{2} \psi+a^{2} \cos ^{2} \psi \\
& =a^{2}
\end{aligned}
$$

That was pretty easy!

Graduate problem: Only do this problem if you are in PHY 610

4. [15] A closed universe has space distance formula

 $d s^{2}=a^{2}\left[d \psi^{2}+\sin ^{2} \psi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]$. Our goal in this problem is to find the volume of the universe. The metric $\boldsymbol{g}_{i j}$ is just the $\mathbf{3 \times 3}$ matrix defined by $d s^{2}=\sum_{i} \sum_{j} g_{i j} d x^{i} d x^{j}$.(a) [5] Find the volume of the universe, which is given by $V=\int \sqrt{\operatorname{det}\left(g_{i j}\right)} d^{3} x$. Note the determinant $\operatorname{det}\left(g_{i j}\right)$ takes care of any necessary factors in the integral. You may have to think a bit (or ask) about the limits on all the angular variables.

First, the metric is given by

$$
g_{i j}=\left(\begin{array}{ccc}
a^{2} & 0 & 0 \\
0 & a^{2} \sin ^{2} \psi & 0 \\
0 & 0 & a^{2} \sin ^{2} \psi \sin ^{2} \theta
\end{array}\right)
$$

The determinant is then easily seen to be $\operatorname{det}\left(g_{i j}\right)=a^{6} \sin ^{4} \psi \sin ^{2} \theta$. To figure out the range of integration is a little trickier. The angles θ and ϕ are very similar to those used in ordinary spherical coordinates, in that $0<\theta<\pi$ and $0<\phi<2 \pi$. From the formula $w=a \cos \psi$, you can figure out that to cover the whole sphere, with w running from a to $-a$, we are going to have to use $0<\psi<\pi$. Hence the volume of the universe is going to be

$$
\begin{aligned}
V & =\int_{0}^{\pi} d \psi \int_{0}^{\pi} d \theta \int_{0}^{2 \pi} d \phi \sqrt{a^{6} \sin ^{4} \psi \sin ^{2} \theta}=a^{3} \int_{0}^{\pi} \sin ^{2} \psi d \psi \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi \\
& =2 \pi a^{3} \frac{1}{2}\left[\psi-\frac{1}{2} \sin (2 \psi)\right]_{0}^{\pi}[-\cos \theta]_{0}^{\pi}=2 \pi a^{3} \frac{1}{2}[\pi][2]=2 \pi^{2} a^{3} .
\end{aligned}
$$

(b) [5] Using the Friedman equation with $k=+1$ (closed universe), find an expression for a_{0} in terms of Ω and \boldsymbol{H}_{0}.

If $\Omega \leq 1$, then the universe is either flat or open, and in both cases probably infinite volume, so there is no point in finding the minimum size. But if $\Omega>1$, then we necessarily have a finite universe. Keeping in mind that $\frac{8}{3} \pi G \rho_{0} \equiv H_{0}^{2} \Omega$, the Friedman equation can easily be rewritten as

$$
\begin{gathered}
\frac{\dot{a}^{2}}{a^{2}}=\frac{8}{3} \pi G \rho-\frac{k c^{2}}{a^{2}}, \\
H_{0}^{2}=H_{0}^{2} \Omega-\frac{c^{2}}{a_{0}^{2}} \\
c^{2} a_{0}^{-2}=H_{0}^{2}(\Omega-1), \\
a_{0}=\frac{c}{H_{0} \sqrt{\Omega-1}} .
\end{gathered}
$$

(c) [5] Experimentally, $\boldsymbol{H}_{\mathbf{0}}=67.8 \mathrm{~km} / \mathrm{s} / \mathbf{M p c}$, and $\Omega=1.0023 \pm 0.0055$. Assuming $1<\Omega<1.01$, find a minimum size for the universe a_{0} in $\mathbf{G p c}$ and a minimum volume in Gpc ${ }^{3}$.

The smaller Ω is, the larger the universe is, so to get a minimum size for the universe we must take Ω as large as possible. So we conclude

$$
a_{0}>\left.\frac{c}{H_{0} \sqrt{\Omega-1}}\right|_{\Omega=1.01}=\frac{\left(2.998 \times 10^{5} \mathrm{~km} / \mathrm{s}\right)}{(67.8 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}) \sqrt{1.01-1}}=44,200 \mathrm{Mpc}=44.2 \mathrm{Gpc}
$$

The volume, therefore, is

$$
V_{0}>2 \pi^{2} a_{\min }^{3}=2 \pi^{2}(44.2 \mathrm{Gpc})^{3}=1.71 \times 10^{6} \mathrm{Gpc}^{3} .
$$

In other words, the universe is big.

