
Physics 310/610 – Cosmology 
Solution Set L 

 
1. [20] A set of Type Ia supernovae has their peak 

apparent magnitude m and their red shift z 
measured.  The results are collected in the table at 
right.   Assume, for purposes of this problem, that 
Type Ia supernovae have a peak absolute 
magnitude of max 19.3M = − . 
 (a) [10] For each supernova, work out the distance 

d in Mpc and the radial velocity v in km/s.  For 
the velocity, I recommend using the non-
relativistic approximation to save time. 

 
 All of the supernovae have small red shift, so we 
can use the non-relativistic approximation z v c= , which gives us velocities of 

299,800  km/sv zc z= = .  The resulting velocities are filled into the table.  The distances can be 
found with 

( )
19.3 19.31 1 5 5.7 55 5 510  pc 10  pc 10  Mpc 10  Mpc

m M m m
md

− + +
+ + − + −= = = =  

The resulting distances and velocities have been filled into the table. 
 

 (b) [6] Plot the velocity versus 
the distance for this set of 
points.  Why are the points 
not exactly on a straight 
line?  

 
 Excel is happy to plot the 
data for us, and even provides a 
trendline.  It is a little non-trivial to 
figure out if we want to force the 
straight line fit to go through zero or 
not.  Obviously, we aren’t moving 
compared to ourselves (which argues for forcing it to be zero), but on the other hand, we might 
have a peculiar velocity (which argues for allowing an offset). 
 The points are not exactly on a straight line because of peculiar velocities; that is, 
galaxies have velocities that differ slightly from the overall Hubble flow.  Indeed, one of the stars 
is so close to us that it is actually moving towards us. 
 

(c) [4] Estimate the value of Hubble’s constant H0, in km/s/Mpc. 
 
 As you can see from the graph (or Excel’s fit), Hubble’s constant is about 72.26 
km/s/Mpc.  That’s a little high, but then again, it’s a made-up problem. 

mmax z d 
(Mpc) 

v 
(km/s) 

7.3 –.0003 2.09 – 90 
11.6 0.0038 15.1 1140 
14.3 0.0121 52.5 3630 
15.7 0.0247 100 7410 
16.1 0.0295 120 8840 
16.6 0.0363 151 10880 
16.7 0.0383 158 11480 
17.2 0.0476 200 14270 
 



 
Note:  Problem 2 part (b) requires that you do problem 1 first. 
 
2. [10] Hubble’s law gives a simple relationship between distance and velocity.  For this 

problem, you will assume (i) Hubble’s Law is exact, and (ii) the velocity does not 
change; i.e., if something is currently moving at 100 km/s, it always was moving at that 
speed. 
(a) [5] Assuming constant speed, find a simple formula for how long ago some distant 

object would have left us t0, given its current speed.  Note that the result does not 
depend on the distance, only on Hubble’s constant H0.  This time is called the 
Hubble time, and is a fair estimate of the age of the universe. 

 
 An object at distance d has a velocity 0v H d= .  If it left us a time t0 ago, and is moving 
at velocity v, then it will have travelled a distance 0d vt= .  Substituting the latter equation into 
the former, we have 
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(b) [5] Estimate the Hubble time in Gyr, assuming the Hubble constant you found in 

problem 1 is correct.  How does this compare with our estimate of the age of the 
oldest stars, 13 ± 1 Gyr? 

 
 This is just a units conversion problem: 

6 16

0 3 7 9
0

1 s Mpc 10  pc km 3.085 10  m yr Gyr 13.53 Gyr
72.26 km Mpc 10  m pc 3.156 10  s 10  yr

t
H

⋅ ×
= = ⋅ ⋅ ⋅ ⋅ ⋅ =

×
 

The numbers match extremely well, since we would expect the age of the Universe to be a bit 
longer than the age of the oldest stars. 

 
Graduate problem:  Only do this problem if you are in PHY 610 
 
3. [15] In class, we showed that the age of the universe is given in general by the formula 

11
0 0 0 1

dxt H
x

−=
Ω + −Ω∫  

 Complete this integral in closed form.  You will probably have to do three cases 
separately: 1Ω < , 1Ω > , and 1Ω = . 

 
 We first rewrite this as ( )

1

0 0 0
1 .t H xdx x= Ω+ −Ω∫  The case 1Ω =  is by far the 

easiest, as no change of variable is required.  We find 
1 13/22 2 2

0 0 3 3 300
0 .t H xdx x= = = − =∫  



For 1Ω > , we can make the trigonometric substitution 2sin
1

x θΩ
=
Ω−

, which then yields 

( )

( )
( )
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[ ]
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 For 1Ω > , we can make the trigonometric substitution 2sinh
1

x θΩ
=

−Ω
, which then 

yields 
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( )

1 1

1 1

3/2 1 12sinh sinh 2
0 0 3/220 0

1 1sinh sinh1
23/2 3/2 00

1 1
3/2

2sinh cos 2sinh
1 1sinh

sinh 2 sinh cosh
1 1

1 1 1 1sinh 1 tanh 1
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In summary, we have 

1

1
0 0

1 tan 1 1 if 1,
1 1

1 1 tanh 1 if 1,
1 1

2  if 1.
3

t H

−

−

 Ω Ω− − Ω >  Ω− Ω− 
 Ω = − −Ω Ω <  −Ω −Ω 


Ω =


 

 
 


