
Physics 310/610 – Cosmology 
Solution Set K 

 
1. [10] A distant star is lensed by the Sun.  The Sun is at dL = 1.00 AU, and the star is so 

distant that effectively S LSd d≈  
(a) [5] Find the Einstein radius Eθ  in arc-seconds for distant stars lensed by the Sun. 
 

 The Einstein radius is given by 
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(b) [5] A star is positioned such that it would normally be just at the edge of the Sun, 

30 1800β ′ ′′= = .  There will be two images, θ± .  Show that the inner one is invisible 
(because it is less than the Sun’s radius away), and find or approximate how much 
the outer one is displaced, θ β+ − , in arc-seconds. 

 
 We simply use the formula 
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Obviously, the second one is way inside the Sun.  The outer one is shifted outwards by 0.93". 
 



2. [10] Suppose a lensing object has mass 1.00M M=


is exactly half way to the source, so 
2S Ld d= .  Show that the Einstein radius Eθ  as a function of the distance dL take the 

form kpcE LC dθ = , and determine the constant C in milli-arc seconds.  It is very 
difficult to measure variations in direction at the milli-arc second scale. 

 
 We simply use the formula 
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Since angular deflections below a mas are virtually impossible to see, this deflection is 
effectively invisible. 
 
 
3. [10] Show that the amplification of a star by gravitational microlensing is an 

amplification; that is, show 
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 We multiply both sides of this equation by 2 24 Eβ β θ+  (a positive number) to yield 
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We now square both sides to yield 
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Cancelling the common terms, this is equivalent to 44 0Eθ > , an obviously true statement. 
 



Physics 610: Only do this problem if you are in the graduate version of this course 
 
4. [10] The amplification is always greater than one.  So why do we have to get things lined 

up pretty well before we get lensing events?  Taylor expand the formula for 
amplification in powers of Eθ β  to at least fourth order in Eθ .  Based on your Taylor 
expansion, estimate the largest angle β  you can miss by to have even a 0.1% 
amplification. 

 
 We can do this by hand or with the help of the binomial theorem.  We first rewrite the 
amplification in the form 
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The binomial expansion tells us ( ) ( ) ( )( )2 31 1
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Applying this, we have 
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Setting 4 4 32 10Eθ β −= , we find ( )1/442000 6.7E Eβ θ θ= = .  So even such a tiny amplification 
requires that you be closer than seven Einstein radii away. 
 If you want to keep more terms, you can easily let Maple do it for you: 
> assume(beta>0);series(1/2*(beta/sqrt(beta^2+4*theta^2)+   
   sqrt(beta^2+4*theta^2)/beta),theta,11); 

You can also do all the terms by hand, with a bit of work. 
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