
Physics 310/610 – Cosmology 
Solution Set J 

 
1. [10] In class, we demonstrated that for flat rotation curves, ( )2 2

0V R V= , the rotational 

and epicycle angular velocity are related by 2κ = Ω .  Consider instead the following 
two cases: 
(a) [5] What is the formula for the rotation velocity around a point source of gravity of 

mass M?  Find, in this case, a simple ratio between κ  and Ω , no more complicated 
than the one we found for flat rotation curves. 

 
 We start with the equation for κ , namely 
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As calculated in class, the formula for the velocity of circular orbits around a mass M is 
( )2V R GM R= .  We therefore have 
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Substituting in, we have 
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or, to simplify, κ = Ω .  It can’t get any simpler than that! 
 

(b) [5] What is the formula for the rotation velocity inside a sphere with uniform 
density ρ ?  Find, in this case, a simple ratio between κ  and Ω , no more 
complicated than the one we found for flat rotation curves. 

 
 We again use the formula ( )2V R GM R= , but we replace M by the mass enclosed 

within a sphere or radius R, which is 34
3M Rπ ρ= .  We therefore have ( )2 24

3V R Rπρ= , and 
hence 
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The frequency for epicycles, therefore, is 
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or, to simplify, 2κ = Ω .  This is as simple, if not simpler, than the formula for flat rotation 
curves. 



2. [10] For the Milky Way galaxy at the radius of the Sun, find the three frequencies Ω , 
ν , and κ (in Myr-1)  and the corresponding periods (in Myr) in the neighborhood of the 
Sun.  Assume we are 8.18 kpc from the center, that our galaxy has a flat rotation curve 
with 0 220 km/sV =  and the local mass density is 30.07 pcMρ −=



.  In one orbit of the 
galaxy, Tφ , how many cycles of up and down motion does the Sun undergo? 

 
 The orbital frequency is just 
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The epicycle frequency is 
1 12 2 0.0275 My 0.0389 Myκ − −= Ω = ⋅ =  

The hard one is the up and down frequency, which is given by 
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The corresponding periods are 
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Obviously, it makes about 2.28 vertical oscillations for each trip around the galaxy. 
 
 



Note:  Problem 3 requires that you do problem 2 first. 
 
3. [10] Assume the Sun is currently at z = 0 and R = R0.  The former implies that the Sun is 

right in the galactic plane (it’s pretty close), the latter implies that the Sun is currently 
moving at exactly the right radial velocity for a circular orbit (it is not, so sue me). 
(a) [5] If the Sun is currently moving upwards at 8 km/s, determine the maximum 

distance z0 (in pc) the Sun will reach above the plane.  Also determine how long 
from now (in Myr) it will reach this position. 

 
 Well, the equation describing the vertical position is ( )0sinz z tν= .  We could have used 
cosine instead, but since we are told it is currently at z = 0, we need sine, not cosine.  The 
velocity in the z-direction is the derivative of this, or ( )0 coszv z tν ν= , which evaluated at t = 0 
gives 0zv z ν= .  It follows that 
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The time this will occur is when z is at a maximum, which is when ( )sin tν  is maximized, which 
occurs when 1

2tν π= , so 
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(b) [5] If the Sun is currently moving inwards at 11 km/s, determine the maximum 

amount R∆  (in pc) that it will drift in from its current distance of 8.18 kpc.  Also 
determine how long from now (in Myr) it will reach this position. 

 
 This time the equation describing the radial position is ( ) ( )0 sinR R R tκ= + ∆ .  Once 
again, we argue that the sine is appropriate, instead of the cosine.  The velocity is given by the 
time derivative, or ( ) ( )cosRv R tκ κ= ∆ , so the velocity now is ( )Rv R κ= ∆ .  We therefore have 

6 7

1 13
11 km/s 10  y 3.156 10  s pc 289 pc

0.0389 My My y 3.086 10  km
RvR
κ −

− ×
∆ = = ⋅ ⋅ ⋅ = −

×
 

The minus sign just means that it is inward, not outwards.  It will achieve this distance once 
again when ( )sin tκ  is at a maximum, which is when 1

2tκ π= , so that 
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Physics 610: Only do this problem if you are in the graduate version of this course 
 
4. [20] For vertical motion, we assumed the density was of the form 0ρ ρ= .  A more 

realistic expression would be 0
zz heρ ρ −= . 

(a) [5] For this density, find an expression for the scalar potential ( )zΦ  as a function of 
z. 

 
 Since the mass distribution is symmetric around z = 0, it is reasonable to assume the 
potential is symmetric about it as well, so that ( ) ( )z zΦ = Φ − .  We therefore will assume that we 
are working at z > 0.  We first find the gravitational acceleration: 
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We then find the gravitational potential using  

( ) ( ) ( )0 04 1 4 .z zz h z h
z z z zz d G h e dz G h z h e hπ ρ π ρ− −Φ = − ⋅ = − − = + −∫ ∫g s  

The constant of integration by demanding ( )0 0Φ = .  We now simply generalize to include the 
case z < 0, so we have 

( ) ( )04 .zz h
z z zz G h z h e hπ ρ −Φ = + −  

  
(b) [5] Suppose a star is bobbing up and down, reaching maximum height z h= ± .  

Using conservation of energy, find the velocity v as a function of its height z and 
maximum height h. 

  
 The potential energy is ( )m zΦ ; the kinetic energy is 21

2 mv .  The total energy, which is 

conserved, is then ( ) 21
2E m z mv= Φ + .  When the star is at its maximum/minimum position 

z h= ± , the kinetic energy must be zero, so ( )E m h= Φ ± .  Hence ( ) ( ) 21
2m h m z mvΦ ± = Φ + . 

Cancelling the m’s and solving for v2, we find 
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(c) [5] Find an integral form for the time it takes to go through one-fourth of a cycle, 
from z = 0 to h, then quadruple it to get the total period T, as a function of h.  The 

corresponding formula for uniform density would be 
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 The time for it to go from 0 to h would be 
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The time to return to z = 0 is the same as this, and the time for the other half of the cycle, when z 
is negative, is exactly the same.  In total, therefore, 
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To make the formulas look as similar as possible, define x by zz h x= .  Then the integral 
becomes 
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This makes the formula as similar as possible.  It is clear that all that is left is the integral, which 
is a function of the single variable zh h . 
 

(d) [5] Evaluate the integral in part (c) numerically for 1
2 zh h= , zh h= , and 2 zh h= .  

Compare to the result for uniform density. 
 
 Since it’s just a numerical integral, we simply let some sort of program do it for us.  I like 
Maple. 
> feval:= proc(y) int(sqrt(2/(y+exp(-y)-x-exp(-x))),x=0.0..y) 
   end proc 
> feval(.5); feval(1.0); feval(2.0); 

 We find 
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All of these numerators would be π if we assumed the density was uniform. 


