
Reference Observed 
6562.7 Å 
4861.3 Å 
4340.5 Å 
4101.7 Å 

5265.8 Å 
4701.6 Å 
4443.0 Å 
4300.4 Å 
4212.7 Å  
4154.5 Å 

 

Physics 310/610 – Cosmology 
Solution Set D 

 
1. [15] The table at right shows those spectral lines of hydrogen 

that are in the range 4000-7000 Å (left column) and the 
observed spectral lines of a distant star (right column). 
(a) [5] One possibility is that the first observed spectral line is 

a blue-shifted version of the first reference line.  If this 
were the case, then other lines on the right would have the 
same ratio λ0/λ.  Convince yourself that that this is not the 
case, in other words, the other spectral lines don’t match up. 

 
 The observed spectral lines, or at least some of them, should match the reference spectral 
lines, or at least some of them.  They will, however, be Doppler shifted, but the amount of 
shifting should be the same for each of them.  For example, the first observed wavelength could 
be a blue shifted version of the reference wavelength.  We note these are in the ratio 

01 5265.8 6562.7 0.8024z λ λ+ = = = .  However, if this is the case, we should see other 
observed lines that are a factor of 0.8024  shorter than the reference lines; for example, at  

Å4861.3 0.8024 3900.7× =  and Å4340.5 0.8024 3482.8× = .  But these don’t correspond to any 
of the lines. 
 

(b) [5] Another possibility is that the first observed spectral line is a red-shifted version 
of the second reference line.  If this is the case, then other lines on the right would 
have the same ratio λ0/λ.  Convince yourself that that this is the case, in other words, 
the other spectral lines do match up. 

 
 In this case we find the ratio is 01 5265.8 4861.3 1.0832z λ λ+ = = = .  If this were the 
case, then we should see observed lines at Å1.0832 4340.5 4701.7× = , 

Å1.0832 4101.7 444 0Å 3.× =  and Å1.0832 6562.7 710 8Å 8.× = .  The first two are pretty much 
exactly right.  The 7108.8 Å  is missing because (as stated in the problem) we have only 
included reference lines in the range 4000 – 7000 Å . 
 

(c) [5] Find the red-shift z and the velocity vr of the star. 
  
 Since 1 1.08321z+ = ,.  So we have 0.08321z = .  Since this is not extremely close to one, 
we should probably use the full relativistic formula, ( ) ( )1 1 1r rz v c v c+ = + − , to get the 
velocity 
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2. [15] In class I gave an approximate formula for the luminosity of a star, namely 

( )3.5L L M M=
 

, where M is the mass of the star (confusingly, M is also used for the 
absolute magnitude).  You may want to present your answers to this question in the 
form of a table. 
(a) [2] Work out the luminosity, in terms of solar luminosities, for stars of mass 0.1, 0.3, 

1, 3, 10, and 30 solar masses 
(b) [5] Assume they are placed at a distance of 10 pc from the Earth.  What would be 

their apparent brightness F, in W/m2? 
 
 The solar luminosities are trivial by direct substitution.  The brightness is given by 
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Both are included in the tables below 
 

(c) [5] Find their apparent magnitude m at this distance.  What is the absolute 
magnitude M of these stars? 

 
 The apparent magnitude is related to the brightness by 
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It is now a straightforward matter to find 
the apparent magnitude of these stars.  
However, since 10 pc is the magic 
distance at which the magnitude is 
defined, this is the same as the absolute 
magnitude.  Hence in the table I have 
labeled it as M, the absolute magnitude. 
 
 
 
 
 
 

M
M



 L
L


 10 pc 10 pc 1 kpc 
F (W/m2) M m 

0.1 0.00032 131.014 10−×  13.49 23.49 
0.3 0.015 124.744 10−×  9.32 19.32 
1 1.00 103.208 10−×  4.74 14.74 
3 47 81.500 10−×  0.57 10.57 
10 3,200 61.014 10−×  – 4.01 5.99 
30 148,000 54.744 10−×  – 8.18 1.82 



(d) [3] Suppose these same stars were brought to a distance of 1 kpc instead.  How 
would their apparent and absolute magnitudes change? 

 
 The absolute magnitude doesn’t change.  However, the apparent magnitude is related to 
the absolute magnitude and the distance by  

( )5log 5 5log 1000 5 15 5 10m M d− = − = − = − =  

Hence the apparent magnitude at 1 kpc is simply the absolute magnitude plus ten. 
 
 
 
Graduate Problem – Do if you are in PHY 610 
 
3. [20] Suppose an object is moving at an angle θ 

compared to straight towards you at a speed v that 
is less than but comparable to the speed of light c.  
(Although this problem involves relativistic velocities, there is no relativity in this 
problem) 
(a) [5] Assume the object starts at a point P and moves to a point Q for a time t.  How 

much closer is it to you at time t?  How much delay ∆t is there between when you 
receive light from P and light from Q? 

 
 It is moving a distance vt in this amount of time.  Because it is coming towards you at an 
angle θ, the distance it comes closer will be cosvt θ . 
 Now, the time between the two signals has two causes: one is just because there was a 
time lag t between the two signals, and another because the second point is closer by cosvt θ .  
Since the speed of light is c, this means that the second signal will have an advantage time of 

cosvt cθ .  So the total time difference is cost t vt cθ∆ = − . 
 

(b) [5] What is the transverse distance dT that the object moves during this time?  Find 
the apparent transverse velocity aT Tv d t= ∆  as a function of v and θ. 

 
 The transverse distance it will come is just sinTd vt θ= .  We then have the apparent 
transverse velocity as 

sin sin .
cos 1 cos

T
aT

d tv vv
t t tv c v c

θ θ
θ θ

= = =
∆ − −

 

As we shall see, for sufficiently high velocities, this can exceed the speed of light. 
 

P 

Q 

To Earth 
θ 



(c) [10] Find the maximum value maxv  of aTv  as a function of θ for fixed v.  Note that it is 
larger than v; i.e., maxv v> .  What is the smallest value of v such that we can have 

maxv c≥ ? 
 

 It is pretty easy to find the maximum by simply taking the derivative and setting it to 
zero.  So we have 
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It is trivial to see that this has solution cos v cθ = .  We then use 2 2sin cos 1θ θ+ = to conclude 

that 2 2sin 1 v cθ = − .  Substituting this into our formula for aTv , we have 
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For low velocities, this is approximately v.  It reaches the speed of light when maxv c= , or when 
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So we can have apparent transverse speeds greater than the speed of light if 1
2

v c≥ . 


