Solution Set A

1. [15] Using the small-angle approximation, find the angular size of the
(a) [5] Sun, with a distance 1.000 AU and diameter $2.000 R_{\odot}$, in arc-minutes.

We apply the formula for small angles, and use the values for the radius of the Sun and the distance to it from the "units" handout.

$$
\alpha=\frac{2.000 \times 6.957 \times 10^{8} \mathrm{~m}}{1.496 \times 10^{11} \mathrm{~m}}=(0.009301 \mathrm{rad}) \frac{360^{\circ}}{2 \pi \mathrm{rad}} \cdot \frac{60^{\prime}}{1^{\circ}}=31.97^{\prime} .
$$

Because the Earth-Sun distance varies, this angle varies slightly.
(b) [5] The nearest star (α Cen A), at a distance of 1.325 pc and diameter $2.446 R_{\odot}$, in mas.

We perform a similar computation.

$$
\alpha=\frac{2.446 \times 6.957 \times 10^{8} \mathrm{~m}}{1.325 \times 3.086 \times 10^{16} \mathrm{~m}}=\left(4.162 \times 10^{-8} \mathrm{rad}\right) \frac{360^{\circ}}{2 \pi \mathrm{rad}} \cdot \frac{60^{\prime}}{1^{\circ}} \cdot \frac{60^{\prime \prime}}{1^{\prime}} \cdot \frac{1000 \mathrm{mas}}{1^{\prime \prime}}=8.58 \mathrm{mas} .
$$

This is a very small angle.
(c) [5] A telescope with diameter \boldsymbol{d} observing light of wavelength λ can resolve objects with angular size $\alpha \sim \lambda / d$. Explain why even the largest telescopes on Earth ($d \sim \mathbf{1 0} \mathbf{m}$) have difficulty directly measuring the diameter of even the nearest stars (besides the Sun) using visible light ($\lambda \sim \mathbf{5 , 0 0 0} \AA$).

Using waves about $5,000 \AA$ with a 10 m telescope, the smallest angles you can see would be about

$$
\alpha=\frac{5000 \times 10^{-10} \mathrm{~m}}{10 \mathrm{~m}}=\left(5.00 \times 10^{-8} \mathrm{rad}\right) \frac{360^{\circ}}{2 \pi \mathrm{rad}} \cdot \frac{60^{\prime}}{1^{\circ}} \cdot \frac{60^{\prime \prime}}{1^{\prime}} \cdot \frac{1000 \mathrm{mas}}{1^{\prime \prime}}=10.3 \mathrm{mas} .
$$

Since this is larger than the actual size, effectively the star would appear as one blurry pixel. Some stars like Betelgeuse do a little better, but it is practically impossible to directly image a star's diameter.
2. [15] When an electron in hydrogen falls from level \boldsymbol{n} to level \boldsymbol{m}, the energy emitted is

$$
\Delta E=(13.6 \mathrm{eV})\left(\frac{1}{m^{2}}-\frac{1}{n^{2}}\right)
$$

Wavelength	Classification
$7,000-10^{7} \AA$	Infrared
$4,000-7,000 \AA$	Visible
$100-4,000 \AA$	Ultraviolet

Assuming the light is emitted as a single photon of light, find the energy (in eV), frequency $(\mathbf{H z})$, wavelength (\AA) and classification of the energy for each of the following transitions:
(a) $2 \rightarrow 1$
(b) $3 \rightarrow 2$
(c) $4 \rightarrow 3$ [5 each]

To find the energy, we just plug and chug in the relevant equation:

$$
\begin{aligned}
& \Delta E_{21}=(13.6 \mathrm{eV})\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)=10.20 \mathrm{eV} \\
& \Delta E_{32}=(13.6 \mathrm{eV})\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=1.889 \mathrm{eV} \\
& \Delta E_{43}=(13.6 \mathrm{eV})\left(\frac{1}{3^{2}}-\frac{1}{4^{2}}\right)=0.661 \mathrm{eV}
\end{aligned}
$$

We then use $v=E / h$ and then $\lambda=c / v$ to get the frequencies and wavelengths.

$$
\begin{aligned}
& v_{21}=\frac{10.20 \mathrm{eV}}{4.136 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s}}=2.466 \times 10^{15} \mathrm{~Hz} \\
& \lambda_{21}=\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{2.466 \times 10^{15} \mathrm{~s}^{-1}}=1.216 \times 10^{-7} \mathrm{~m}=1216 \AA \\
& v_{32}=\frac{1.889 \mathrm{eV}}{4.136 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s}}=4.567 \times 10^{14} \mathrm{~Hz} \\
& \lambda_{32}=\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{4.567 \times 10^{14} \mathrm{~s}^{-1}}=6.564 \times 10^{-7} \mathrm{~m}=6564 \AA \\
& v_{43}=\frac{0.661 \mathrm{eV}}{4.136 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s}}=1.598 \times 10^{14} \mathrm{~Hz} \\
& \lambda_{43}=\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.598 \times 10^{14} \mathrm{~s}^{-1}}=1.876 \times 10^{-6} \mathrm{~m}=18,760 \AA
\end{aligned}
$$

Looking at the final numbers, we see that these are ultraviolet, visible, and infrared light respectively.

