Physics 310/610 – Cosmology Homework Set W

- 1. This question concerns the relative strength of electric and gravitational forces.
 - (a) Write a formula for the gravitational force between two electrons. Find the ratio of the gravitational force to the Coulomb force, $F = ke^2/r^2$, where k is Coulomb's constant and e is the electron charge (which you can go look up). Show that the ratio is constant and evaluate it.
 - (b) For very energetic particles, the mass *m* for the electron is replaced by E/c^2 . For what energy *E* in GeV will the gravitational force between a pair of electrons be as strong as the electric force?
 - (c) A typical energy of a particle at temperature T is given by $3k_BT$. What is k_BT when gravity is the same strength as the other forces? How old is the universe at this time? Assume the universe is radiation dominated at this time, with $g_{eff} = 200$ for definiteness.
- 2. We have recently been discussing things like the *Planck mass*, the *Planck time*, and the *Planck length*. What are all these quantities? Any quantum theory of gravity must involve the speed of light c, the reduced Planck constant \hbar and the gravitational constant G. Start by looking up the units of each of these quantities (unless you know them).
 - (a) Using only dimensional analysis, find expressions for the Planck time t_P , the Planck distance l_P and the Planck mass m_P , where in each case the formula will be of the form $x_P = G^{\alpha} \hbar^{\beta} c^{\gamma}$, where α , β , and γ are simple rational numbers.
 - (b) Evaluate each of the quantities in part (a) in standard SI units.
 - (c) Using simple combinations from parts (a) and (b), find the Planck energy E_p in both J and GeV, and find the Planck mass density ρ_p in kg/m³. Naively, the mass density of empty space should be about ρ_p . What is the ratio of ρ_p to the actual mass density of empty space, $\rho_{\Lambda} = 5.65 \times 10^{-27} \text{ kg/m}^3$.
 - (d) Suppose it actually takes an energy E_p to create a universe. Given that the cost of electricity in the United States in 2023 is about \$0.169 per kilowatt hour, how much would it cost you to make a universe?