Physics 310/610 – Cosmology Homework Set V

- 1. In class we found that the annihilation cross-section required to get the correct density of dark matter today is $\sigma \approx 4.5 \times 10^{-40} \text{ m}^2$.
 - (a) Assume the cross section takes a typical electromagnetic cross-section value, $\sigma = \alpha^2 \hbar^2 / (m^2 c^2)$, where $\alpha = \frac{1}{137}$ is the fine structure constant. What would the relevant mass *m* in GeV/ c^2 be?
 - (b) Suppose the particle annihilates via weak interactions, with cross-sections of order $\sigma = G_F^2 E_1 E_2 / (\hbar c)^4$, where $G_F / (\hbar c)^3 = 1.166 \times 10^{-5}$ GeV⁻². What mass would you need? Keep in mind that the particles are non-relativistic when they collide.
 - (c) There is an approximate maximum cross-section for annihilation $\sigma_{\text{max}} = 4\pi\hbar^2/p^2$, where p is the momentum of the particles. Assume the kinetic energy of a typical dark-matter particle at freezeout is $\frac{3}{2}k_BT$, and that $k_BT = \frac{1}{30}mc^2$. What is the maximum mass that the dark matter particles could have and keep their cross section below σ_{max} ?
- 2. The universe contains a lot of energy, but it grew a lot during inflation. How much energy was there before?
 - (a) The energy in radiation is given by

$$u = g_{eff} \frac{\pi^2 \left(k_B T\right)^4}{30 \left(\hbar c\right)^3}$$

Calculate this energy density in J/m³ both today ($g_{eff} = 3.36$) and at the end of inflation ($k_BT = 10^{16}$ GeV, and we'll guess $g_{eff} = 200$).

- (b) The current size of the visible universe is a sphere of radius about 13.5 Gpc. Convert this to meters. To a very good approximation, the scale factor is related to the size of the universe by the approximate relation $a \propto T^{-1}g_{eff}^{-1/3}$. What was the size of the region that become the *current* visible universe at the end of inflation?
- (c) Find the total radiation energy of the universe now and at the end of inflation (in J).
- (d) According to inflation, the universe grew in size by at least a factor of 10^{28} . Assuming the temperature at the start of inflation was the same as at the end, calculate the energy at the start of inflation. Then work out the equivalent mass, using $E = mc^2$. You should find that the mass required is remarkably small.

Graduate Problems: There are no problems for PHY 610 on this homework