Physics 310/610 – Cosmology Homework Set U

- 1. There is an additional problem with neutrinos as dark matter: It turns out the Pauli Exclusion Principle makes it hard to fit them in a galaxy. The computation is a bit complex, but we can approximate it pretty well as follows:
 - (a) The local density of dark matter in the neighborhood of the Sun is around $0.4 \text{ GeV}/c^2/\text{cm}^3$. Assuming all three neutrinos weigh $3.7 \text{ eV}/c^2$ each, what is the local number density *n* of neutrinos in m⁻³? Then divide by three to get the number density of just one of the three types of neutrinos.
 - (b) Suppose I placed each neutrino in a box of volume L^3 . What would be the size of the box such that the density of neutrinos would match part (a)?
 - (c) According to quantum mechanics, to fit a particle in a box of size L would require it to acquire a momentum of $p = \pi \hbar/L$. Work out the corresponding momentum. The most convenient units for this would be eV/c.
 - (d) What is the corresponding velocity of the neutrinos? Compare to the approximate escape velocity of a galaxy like ours, probably around 600 km/s.
- 2. Suppose the universe is filled with matter in some regions, and anti-matter in others. Let's imagine the segregation occurred at the time of quark confinement, so somehow the quarks congregated together, and so did the anti-quarks. How large could these regions be?
 - (a) Assuming the quarks and anti-quarks are gathered at the speed of light, what is the largest region *at the time* over which quarks could be gathered together?
 - (b) Assuming the universe has kept *aT* constant since then (a fair approximation), how much has the universe grown since then? How large is this region now?
 - (c) Find the baryonic mass of spheres of size given in part (b) using the density of baryons today $\rho_{b0} = 4.196 \times 10^{-28} \text{ kg/m}^3$.
 - (d) As a basis of comparison, look up the Earth's mass. Is it plausible that this mechanism might produce pockets of matter as observed today?

Graduate Problems: There are no problems for PHY 610 on this homework