Homework Set P

1. In class we showed that the average photon, at present, does not hit any electrons. In this problem, you will determine if the average electron is hit by a photon. The cross section is still the Thomson cross-section given in class. The density is the density of photons, since that's what an electron is trying to hit. The relative speed is still c. In the current age of the universe, how many collisions will a free electron have? Will a typical electron have been hit by at least one photon?
2. For each of the following, estimate the thermal energy $k_{B} T$ of the universe. Use $g_{\text {eff }}=3.36$.
(a) When primordial tritium decays $(t=17.8 \mathrm{y})$.
(b) When primordial free neutrons decay $(t=886 \mathrm{~s})$.
3. For each of the following, find $g_{\text {eff }}$, and estimate the age of the universe in seconds.
(a) At nucleosynthesis, when $k_{B} T=80 \mathrm{keV}$.
(b) When the thermal energy is the same as the electron rest energy, $k_{B} T=m c^{2}$. All particles are at the same temperature. In addition to photons and neutrinos, there are also electrons and positrons ($g=4$ extra fermions).
(c) At the electroweak scale, $k_{B} T=100 \mathrm{GeV}$. At this time, everything is at the same temperature, and there are $g=28$ total spin states for bosons and $g=90$ total spin states for fermions.

Graduate Problem: Do this problem only if you are in PHY 610.
4. Consider a particle moving at the speed of light in a flat universe, so $d s=0$, where

$$
d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}\right]
$$

Assume that the particle starts at $r=0$ at time $t=0$ and travels radially.
(a) Assume first that the universe is radiation dominated, so that $a(t) \propto t^{1 / 2}$. Show that at time t the distance the particle has traveled $d=r a(t)$ is at most $k_{r} c t$, and determine the pure numerical constant k_{r}, independent of t.
(b) Assume second that the universe is matter dominated, so that $a(t) \propto t^{2 / 3}$. Show that at time t, the distance the particle has traveled is at most $k_{m} c t$, and determine the pure numerical constant k_{m}, independent of t.
(c) Assume third that the universe is cosmological constant dominated, so that $a(t) \propto \exp \left(H_{1} t\right)$. Show that in this case, for sufficient time, the distance traveled is greater than any multiple of $c t$.

