Physics 310/610 - Cosmology Homework Set O

- 1. In class, we found that in the future, the size of the universe will grow exponentially, $a \propto \exp(H_{\Lambda}t)$.
 - (a) Using our best estimates of H_0 and Ω_{Λ} , find H_{Λ} in Gyr⁻¹. A good estimate of the distance to the edge of the visible universe at that time would be $d_{\text{max}} = c/H_{\Lambda}$. Find d_{max} in Gpc.
 - (b) At present, the nearest galactic cluster to the local group is about at a distance of 3.3 Mpc. Assuming it participates in the general expansion of the universe, how far in the future will it be until it reaches the distance d_{max} .
 - (c) We know about the big bang largely because of the cosmic microwave background radiation. Find the peak wavelength for the λ_{max} for the current cosmic microwave background radiation. This radiation is theoretically undetectable when λ_{max} exceeds d_{max} , due to the expansion of the Universe. How long in the future will this occur?
- 2. Estimate the age of the universe (in convenient multiples of the year), the red shift z, the temperature T

Event	z	<i>T</i> (K)	k_BT (eV)	Age
Reionization	10.5			
Room Temp		300.		
Recombination			0.256	

in K, and the

characteristic energy $k_{B}T$ for each of the following events:

- (a) Reionization of the universe at z = 10.5.
- (b) Universe is at room temperature T = 300 K.
- (c) Recombination $k_B T = 0.256 \text{ eV}$.
- 3. The number density of photons in a thermal distribution is given by

$$n_{\gamma} = \frac{2\zeta(3)}{\pi^2} \left(\frac{k_B T}{\hbar c}\right)^3 \quad \text{where} \quad \zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3} \approx 1.202$$

- (a) Find a general formula for the average energy of a photon, given by $\overline{E} = u/n$. Hint: your instructor uses the approximation $\overline{E} = 3k_BT$.
- (b) Find the current density of background photons in the universe, and the ratio of photons to baryons, n_B/n_{γ} .

Graduate Problem: Only do this problem if you are in PHY 610

4. The 4d metric (assuming the universe is flat) is given by

$$ds^{2} = -c^{2}dt^{2} + a^{2}(t)(dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2})$$

where in the future, $a(t) \approx a_0 \exp(H_{\Lambda}t)$, where a_0 is the size of the universe now, and t is the time starting from now.

- (a) Suppose we have an incoming photon moving directly towards us (photons always have ds = 0). Find an equation for dr/dt.
- (b) Solve the equation from part (a) so you can get r(t) for an incoming photon
- (c) Show that at *any* time in the future, there is a distance d_{\max} such that a photon leaving from d_{\max} at time t will never reach us. The distance to an object at time t is given by ra(t). You should find that d_{\max} is independent of time.