Physics 310/610 – Cosmology Homework Set M

- 1. The critical density is the density required to have $\Omega = 1$. Assuming Hubble's constant is $H_0 = 67.8 \text{ km/s/Mpc}$,
 - (a) Find the critical density. Write your answer in kg/m³ and in M_{\odot} /kpc³.
 - (b) The actual value of Ω for ordinary matter is only $\Omega_b = 0.0484$. If this is all in the form of hydrogen atoms, what is the number density of hydrogen atoms per cubic meter?
- 2. We have mostly been neglecting the photons. As we will discover shortly, the universe is filled with electromagnetic radiation at a temperature $T_r = 2.725$ K.
 - (a) Find the energy density u. Also find the mass density $\rho_r = u/c^2$.
 - (b) What is the contribution Ω_r to the total energy density of the universe?
- 3. In class I claimed that any point on a 3-sphere of radius *a* could be written as

$$x = a \sin \psi \sin \theta \cos \phi$$
, $y = a \sin \psi \sin \theta \sin \phi$, $z = a \sin \psi \cos \theta$, $w = a \cos \psi$.

Show that these points do, in fact, constitute a 3-sphere of radius *a*.

Graduate problem: Only do this problem if you are in PHY 610

4. A closed universe has space distance formula

$$ds^{2} = a^{2} \left[d\psi^{2} + \sin^{2}\psi \left(d\theta^{2} + \sin^{2}\theta d\phi^{2} \right) \right]$$

Our goal in this problem is to find the volume of the universe. The *metric* g_{ij} is just the 3×3 matrix defined by $ds^2 = \sum_i \sum_j g_{ij} dx^i dx^j$.

(a) Find the volume of the universe, which is given by $V = \int \sqrt{\det(g_{ij})} d^3x$. Note the

determinant det (g_{ij}) takes care of any necessary factors in the integral. You may have to think a bit (or ask) about the limits on all the angular variables.

- (b) Using the Friedman equation with k = +1 (closed universe), find an expression for a_0 in terms of Ω and H_0 .
- (c) Experimentally, $H_0 = 67.8 \text{ km/s/Mpc}$, and $\Omega = 1.0023 \pm 0.0055$. Assuming $1 < \Omega < 1.01$, find a minimum size for the universe a_0 in Gpc and a minimum volume in Gpc³.