Homework Set L

1. A set of Type Ia supernovae has their peak apparent magnitude m and their red shift z measured. The results are collected in the table at right. Assume, for purposes of this problem, that Type Ia supernovae have a peak absolute magnitude of $M_{\max }=-19.3$.
(a) For each supernova, work out the distance d in Mpc and the radial velocity v in km / s. For the velocity, I recommend using the non-relativistic approximation to save time.
(b) Plot the velocity versus the distance for this set of points. Why are the points not exactly on a straight line?
(c) Estimate the value of Hubble's constant

$m_{\max }$	z	d (Mpc)	v $(\mathrm{~km} / \mathrm{s})$
7.3	-.0003		
11.6	0.0038		
14.3	0.0121		
15.7	0.0247		
16.1	0.0295		
16.6	0.0363		
16.7	0.0383		
17.2	0.0476		

2. Hubble's law gives a simple relationship between distance and velocity. For this problem, you will assume (i) Hubble's Law is exact, and (ii) the velocity does not change; i.e., if something is currently moving at $100 \mathrm{~km} / \mathrm{s}$, it always was moving at that speed.
(a) Assuming constant speed, find a simple formula for how long ago some distant object would have left us t_{0}, given its current speed. Note that the result does not depend on the distance, only on Hubble's constant H_{0}. This time is called the Hubble time, and is a fair estimate of the age of the universe.
(b) Estimate the Hubble time in Gyr, assuming the Hubble constant you found in problem 1 is correct. How does this compare with our estimate of the age of the oldest stars, 13 ± 1 Gyr?

Graduate problem: Only do this problem if you are in PHY 610
3. In class, we showed that the age of the universe is given in general by the formula

$$
t_{0}=H_{0}^{-1} \int_{0}^{1} \frac{d x}{\sqrt{\Omega / x+1-\Omega}}
$$

Complete this integral in closed form. You will probably have to do three cases separately: $\Omega<1, \Omega>1$, and $\Omega=1$.

