Physics 310/610 – Cosmology Homework Set A

- 1. Using the small-angle approximation, find the angular size of the
 - (a) Sun, with a distance 1.000 AU and diameter $2.000 R_{\odot}$, in arc-minutes
 - (b) The nearest star (α Cen A), at a distance of 1.325 pc and diameter 2.446 R_{\odot} , in mas.
 - (c) A telescope with diameter *d* observing light of wavelength λ can resolve objects with angular size $\alpha \sim \lambda/d$. Explain why even the largest telescopes on Earth ($d \sim 10$ m) have difficulty directly measuring the diameter of even the nearest stars (besides the Sun) using visible light ($\lambda \sim 5,000$ Å).
- 2. When an electron in hydrogen falls from level *n* to level *m*, the energy emitted is

$$\Delta E = (13.6 \text{ eV}) \left(\frac{1}{m^2} - \frac{1}{n^2}\right)$$

Wavelength	Classification
$7,000 - 10^7 \text{ Å}$	Infrared
4,000 – 7,000 Å	Visible
100–4,000 Å	Ultraviolet

Assuming the light is emitted as a single photon of light, find the energy (in eV), frequency (Hz), wavelength (Å) and classification of the energy for each of the following transitions: (a) $2 \rightarrow 1$ (b) $3 \rightarrow 2$ (c) $4 \rightarrow 3$

Graduate Problem – no graduate problem for this homework