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In this paper we wish to argue that the labour theory
of value is a scientific theory in the strongest sense of the
empirical sciences. We first elaborate upon what we take
to be criteria of scientificity, and then show that these are
in practice met by the labour theory of value.

1 General criteria of scientificity

Criterion of testability

Scientific theories tell us something about the material
world. They are means by which we can both explain
and predict aspects of reality. They are not the only form
of explanation: myth, story telling and religion also ex-
plain things, but with more limited predictive power.

A theory which makes no predictions is never scien-
tific, whilst one whose predictions have now been in-
validated has forfeited any prior claims to science. A
scientific theory makes testable predictions. Note that
by “prediction” we don’t just mean forecasting the fu-
ture, though this can be part of it. An historical science
can formulatetemporal “postdictions” aslogical pre-
dictions. Scientific predictions make statements about
the world that are not available as prior data. For in-
stance, the australopithecine long predated Darwin, but
its existence—as the “missing link”—was only subse-
quently deduced on the basis of the theory of evolution.
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Such predictions involve applying some general law to
pre-given data to produce derived data whose validity
can then be tested. The derived data need not be in
the future, or even unknown, provided that they are not
made available as input data.

Elegance or simplicity

A second criterion is elegance, captured in William of
Occam’s dictum that entities should not be multiplied
without cause. Given two theories, predicting available
data equally well, science opts for the simpler. Ptolemy
plus epicycles might run Newton a close race, had not
simplicity favored the latter.

This favoring of the simple echoes the demands of
prediction. The better prediction extends our knowledge
furthest on the basis of the least pre-given information.
A theory with added epicycles, special cases and fudge
factors may predict observation well. . . since the obser-
vations are woven into its very weft.

Information gain

A scientific law compresses many, even a potential in-
finity of, observations into a simple formula. It is a ma-
chine for gaining information. In this guise we revisit
prediction and simplicity. The information gained from
a law is given by the information yielded from the law’s
application less the information put in. We can put in
information either in the data-set to which the law is ap-
plied, or in the formula in which the law is encoded.1

Although the encoding of the formula should, in princi-
ple, be included in any measure of the information cost
of a theory, for the value theories that we will consider
the formula lengths are essentially the same, though the
input data lengths are not.

Let us refer to the application of a law as the function
applicationp = L(d), whereL stands for the law,d for

1Strictly the formula and input data should be expressed in a form
suitable for interpretation by the Universal Turing Machine. A good
exposition of the concept of the Universal Turing Machine isprovided
by Penrose (1989).
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the data to which it is applied, andp the predictions pro-
duced. For a law to be valid the information content ofp
must exceed the sum of the information content inL and
in d. The first criterion said that the predictions must not
be included in the input data; they must be new informa-
tion, p must not just be a repetition ofd. The theory
may predict the input data but it must predict more be-
sides. Our second criterion, simplicity, ensures that the
law itself does not simply tabulate its predictions. The
information gain criterion incorporates both criteria in a
stronger form: the sum of the information in the input
data and the encoding of the law must be less than the
predictions produced. Only then is there real informa-
tion gain (Solomonoff, 1964).

Randomness

Random processes exhibit no lawful behavior, and thus
cannot be predicted. Information theory states that a se-
quence of numbers is random if there exists no formula
shorter than the sequence itself, capable of generating
the sequence. A non-random sequence, by contrast, has
a shorter generator. 1, 1, 2, 3, 5, 8 is arguably random
while 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,
510, 887, 1397 is not, since the latter can be generated
by the Fibonacci formula

f (n) = f (n − 1) + f (n − 2); f (0) = 1; f (1) = 1

of shorter length. A scientific law captures the non-
random behavior of reality. If we view the law plus its
input data as a formula, the formula must be shorter than
the data its application produces.

Our object in this paper is to use this general perspec-
tive to assess the relative merits of three variant formulae
for predicting observed prices, namely “standard” Marx-
ian values (or vertically integrated labour coefficients),
Sraffian prices of production, and prices of production
as interpreted by the “Temporal Single System” (TSS)
school (e.g. McGlone and Kliman, 1996). We are aware
that these theories may be conceived as serving discur-
sive purposes other than the prediction of actual prices,
but we treat them here as predictive formulae.

2 Three formulae

This section deals with the size of the formula needed to
construct three variant predictors of prices.

Vertically integrated labour coefficients

These are obtained (in principle—but see section3 for
a discussion of practical issues) as then-vectorv that

solves

v = Av + λ

whereA is ann × n matrix of technical coefficients and
λ is ann-vector of direct labour-hours per physical unit
of output. The required data are then then2 technical
coefficients and then direct-labour coefficients. The so-
lution vector is typically obtained using an iteration

v(0) = λ

v(n + 1) = Av(n) + λ

which terminates when the largest element of the dif-
ference vectorv(n + 1) − v(n) shrinks below some set
tolerance.

Sraffian prices of production

These are obtained as then-vectorp that solves2

p = (1 + r )Ap+ w

where the scalarr represents the general rate of profit
and w is an n-vector of (direct) wages paid per unit
of output in each industry. The data requirements here
are essentially the same as for the vertically integrated
labour coefficients, although one more piece of informa-
tion is required, namely the profit rate (or the real wage,
from which the profit rate can be inferred). The calcu-
lation proceeds in a similar manner, for instance via the
iteration

p(0) = w

p(n + 1) = (1 + r )[ Ap(n)] + w

TSS prices of production

TSS prices of production are obtained as the sum of the
(predetermined) price of the inputs plus an aliquot share
of the aggregate profit. Writingu for such prices we
have

u = (1 + r )[ Ap(−1) + w]

wherep(−1) denotes the given vector of input prices as
of the beginning of the period and the other symbols are
as defined above. The data-requirement for calculating
this vector is clearly greater than that for the vertically
integrated labour coefficients and Sraffian prices, since
in addition to theA matrix and the wage vector we also
require a vector of given input prices.

2If wages are taken to be paid in advance then the following equa-
tion is respecified asp = (1+ r )(Ap+ w).
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3 Some practical concerns

Section2 skated over some issues that have to be faced
when the above-mentioned formulae are actually put to
use. This section raises two such issues. The first, which
can be dealt with quite briefly, concerns the distinction
between fixed and circulating capital. The “textbook”
presentation of the calculation of prices of production
(whether in the Sraffian or the TSS variant) in effect
assumes a pure circulating capital system, which sup-
presses the distinction between capital stocks (on which,
presumably, the rate of profit “ought” to be equalized)
and the flow consumption of capital (as measured in
the “A” matrix of an input–output table). When this
simplifying assumption is dropped, it becomes appar-
ent that the price of production calculation requires
additional data—namely the stocks of capital in each
industry—while the vertically integrated labour coeffi-
cients emerge as distinctly the most parsimonious pre-
dictor.

The second question demands a fuller discussion
since it goes to the heart of the project of predicting
prices using empirical labour values. In the standard
presentation of the principle of calculation of Marxian
values one starts from data on (a) intersectoral flows of
productin naturaand (b) direct labour-hours performed
in each sector of the economy. Given the statistics that
are available for capitalist economies, however, one has
no choice but to use data that are expressed in monetary
terms. Instead of in-kind figures for, say, the quantity
of coal used by the steel industry or the quantity of alu-
minium used by the aircraft industry, we have figures for
themoney valueof the purchases of each industry from
each other industry. And instead of a vector of hours
of direct labour performed in each industry we have a
vector of wage bills.

This raises a concern: if prices are written into the
data we are using to calculate labour values in the first
place, is there not something circular about turning
around and claiming to predict or explain prices on the
basis of these values? In fact this objection is mistaken,
but since it has some forceprima faciewe shall address
it in detail. It will be useful to distinguish two points: the
use of a wage-bill vector as a proxy for a labour-hours
vector, and the use of monetary intersectoral flows (and
output figures) in place of in-kind flows. The first of
these issues does create a real problem (but not a very
serious one, in our view), while the second does not.

Wage bills versus labour hours

By using wage-bill data as a proxy for labour hours one
is in effect computing a vector, not of vertically inte-

gratedlabour coefficients as such, but of vertically in-
tegrated wage-cost coefficients. If the wage were uni-
form across industries this would not matter at all, but
the existence of inter-industry wage differentials creates
a complication. The question is, what is the relationship
between such wage differentials on the one hand, and in-
tersectoral differences in the “value-creating” power of
labour on the other? Here are two polar possibilities:

1. Intersectoral wage differentials have nothing to do
with differential value-creation: they are an arbi-
trary outcome of market or other social forces. In
this case, clearly, the “values” calculated using the
wage-bill proxy will be inaccurate as a representa-
tion of “true” values. Further, it is likely that the
figures thus obtained will be better correlated with
market prices than the unknown “true” values—
since wage-cost is presumably relatively closely re-
lated to actual capitalist pricing practice—leading
to an over-statement of the predictive power of the
labour theory of value.

2. Intersectoral wage differentials are an accurate re-
flection of differential value-creating power. Wage
differentials reflect the cost of training, while rel-
atively highly trained labour creates more value
per clock hour—or more precisely, transfers to the
product the labour-content of the training alongside
the actual creation of new value. In this case the
industry wage-bill figures are actually a better ap-
proximation to what one is trying, theoretically, to
measure than simple direct clock hours would be.

As we have said elsewhere (e.g. Cockshott, Cottrell
and Michaelson, 1995), surely the truth lies somewhere
between these poles. Intersectoral wage differentials
will in part reflect “genuine” differences in value pro-
ductivity, and partly reflect extraneous factors. In any
case, if the input–output structure of the economy ex-
hibits fairly strong interdependence then the vertically
integrated wage-cost coefficients for any given sector
will comprise a broad mix of labour from different sec-
tors so that the effects of the extraneous factors will tend
to cancel out.

Product flows: Quantities versus monetary magnitudes

The necessity of working with monetary magnitudes
rather than in-kind product flows is in part a result of
the degree of aggregation of the actually available input–
output tables for capitalist economies. That is, in order
to construct a meaningful input-output tablein natura it
is necessary that the data be fully disaggregated by prod-
uct, but many of the industries as defined in the actual
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tables produce a wide range of different products. There
can be no meaningful number for thequantityof output
of “Aircraft and Parts” or “Electronic Components and
Accessories”, or for the in-kind flow of the product of
the latter industry into the former. The practical solution
is to present the aggregate monetary values of flows of
this sort.

But this does not create a problem, if one is interested
in comparing the aggregate monetary value of the output
of the industries with the aggregate labour-value of those
same outputs. The point is this:The vector of aggregate
sectoral labour values calculated from a monetary table
will agree with the vector calculated from a physical ta-
ble, up to a scalar, regardless of the price vector and the
(common) wage rate used in constructing the monetary
table. Or in other words, the vector of sectoral labour
values obtained is independent of the price vector used.
One might just as well (if it were practically possible)
use an arbitrary vector of accounting prices or weights
to construct the “monetary” table. The fact that actual
prices are used in the published data does not in any way
“contaminate” the value figures one obtains; no spurious
goodness of fit between values and prices is induced.

Proof

Consider an economy characterized by the following ar-
rays:

U An n×n matrix of intersectoral product flows
in kind, such thatui j represents the amount of
industry j ’s output used as input in industry
i .

q An n×1 vector of gross outputs of the indus-
tries, in their natural units.

l An n × 1 vector of direct labour-hours per-
formed in each industry.

It will be useful also to define ann × n diagonal matrix
Q such that

Qi j =

{

qi for i = j

0 for i 6= j

The standard calculation of labour-values proceeds as
follows. First calculate then × n matrix of technical
coefficients asA = Q−1U and then-vector of direct
labour input per unit of physical output asλ = Q−1l .
Then-vector of unit values (vertically integrated labour
coefficients) is then given by

v = (I − Q−1U)−1Q−1l = (I − A)−1λ

and then-vector ofaggregatevalues of the sectoral out-
puts is

V = Qv = Q(I − A)−1λ (1)

We now construct the monetary counterpart to the
above arrays. Let then-vector p represent the prices of
the commodities and the scalarw denote the (common)
money wage rate.3 Let us also define ann × n diagonal
matrix P such that

Pi j =

{

pi for i = j

0 for i 6= j

Corresponding to each of the initial “real” arrays
above there is a monetary version as follows:

Û =U P Matrix of money-values of intersec-
toral product flows

q̂ = Pq Vector of money-values of gross
outputs

l̂ = wl Vector of industry wage-bills

From these we can construct counterparts to the derived
“real” arrays. First then × n diagonal matrixQ̂, whose
diagonal elements arepi qi , is given by

Q̂i j =

{

q̂i for i = j

0 for i 6= j
= QP (2)

The counterpart to the matrix of technical coefficients is

Â = Q̂−1Û = (QP)−1U P

= P−1Q−1U P = P−1AP (3)

The elements of̂A represent the dollars’ worth of input
from sector j required to produce a dollar’s worth of
output in sectori . Finally, the counterpart toλ is the
n-vectorλ̂

λ̂ = Q̂−1l̂ = (QP)−1wl

= wP−1Q−1l = P−1wλ (4)

whose elements represent the direct labour cost per dol-
lar’s worth of output in each sector.

Now here is the issue: suppose we are not privy to the
information on product flows in kind and labour-hours,
and have at our disposal only the information given in

3Having addressed the issue of intersectoral wage differentials
above, we abstract from it here.

4



the monetary tables. On this basis we can calculate a
vectorv̂,

v̂ = (I − Â)−1λ̂

While vi represented the vertically integrated labour
hours per physical unit of output of commodityi , thev̂i

that we are able to obtain from the monetary tables rep-
resents the vertically integrated labour cost per dollar’s
worth of output of commodityi . If we then multiply up
by the money-value of the gross outputs of the industries
we obtain the vector of vertically integrated labour costs
for the industries.

V̂ = Q̂v̂ = Q̂(I − Â)−1λ̂ (5)

We are interested in the relationship between (1), the
aggregate sectoral values that could be obtained in prin-
ciple from the datain natura, and (5), the corresponding
figures obtained by using the monetary data.

On the basis of the correspondences (2), (3) and (4)
we can rewrite (5) as

V̂ = QP(I − P−1AP)−1P−1wλ (6)

Recall that (1) specifiedV = Q(I − A)−1λ. Comparing
these two equations we see thatV̂ = wV on condition
that

(I − A)−1 = P(I − P−1AP)−1P−1 (7)

That this condition is indeed satisfied may be seen by
taking inverses on both sides of (7). On the left, we sim-
ply get(I − A); on the right we get

[ P(I − P−1AP)−1P−1]−1

= P(I − P−1AP)P−1

= (P − AP)P−1 = I − A

This means we have proved thatV̂ = wV , which is
to say that the aggregate sectoral values obtained from
the monetary data agree—up to a scalar, namelyw, the
common money wage rate—with those that would be
obtained from the datain natura, if these were available.
The aggregate value vector is independent of the price
vector used in forming the monetary tables.

4 Comparison of information gain

We can now return to our main theme, the assessment
of the three versions of value theory in terms of predic-
tive power or information gain. As we have shown, the

labour theory of value has the simplest formula, the Sraf-
fian price of production formulation has a slightly more
complex formula, and the TSS price of production the-
ory has the most complex formula (counting only the
data input). A more complex formula can be justified if
the increase in prediction gained exceeds the additional
formulaic complexity.

The general equation for the information content or
entropy of a sequence of symbols is

H = −
∑

i

πi log2(πi )

whereH is the entropy of the sequence in bits,πi is the
probability of thei th symbol occuring, and we sum over
the whole sequence of symbols.4 Let us identify our
symbols as being the ratiop/ewherep is a market price
and e is an estimator of market price, either a labour
value or some form of price of production. Defining our
symbols in this way we obtain the conditional entropy
of the market price vectorP given the estimator vector
E. Thus

H (P|E) = −
∑

i

πi log2(πi )

whereπi = Pr(p/e ∈ xi ), the probability that a ran-
domly selected unit of output has ap/e ratio that falls
within thei th small interval (the width of these intervals
being determined by the precision of measurement).

In general the best estimator will be that which gives
the lowest conditional entropy of the market price vec-
tor, since this means that most of the information con-
tent of the latter vector is already encoded in the esti-
mator. Given the total information content of the market
price vectorH (P), we can calculate the mutual informa-
tion or “transinformation” (Reza, 1961) asI (P; E) =

H (P) − H (P|E). This figure represents the reduction
in uncertainty regardingP that is achieved by condition-
ing on the predictorE; other things equal we would like
this to be as large as possible, but we also have to factor
into our assessment the required information input. In
this light the marginal predictive efficiency of a theory
is given by

1I (P; E)

1I (input)
,

the ratio of incremental transinformation to incremen-
tal information input, relative to a simpler theory. This
marginal predictive efficiency gives a measure of the el-
egance of the theory.

To perform these calculations we thus require (1) a
figure for the total information content of the market

4For discussion of information and entropy see for instance Reza
(1961), Chaitin (1987).
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price vector, and (2) the probability distribution for the
ratio p/e. We estimate the information content of the
market price vector by making an assumption about the
accuracy of the source data, namely that figures are
given to 3 digits or 9.96 bits of accuracy. The informa-
tion content of the market price vector would then be 47
industries each contributing 9.96 bits, or about 470 bits.
The exact number of digits assumed is relatively unim-
portant, since a higherH (P) will “benefit” (i.e. raise
the value ofH (P; E) for) all the methods of estimation
equally.

The data

Our data were drawn from the 1987 US input–output ta-
ble along with BEA capital stocks figures for the same
year.5 The BEA give figures for plant and equipment
at a higher level of aggregation than that employed in
the i/o table. We therefore had to merge some rows
and columns of the i/o table to ensure that each indus-
try had a distinct figure provided for the value of plant
and equipment. The resulting table has 47 columns and
61 rows. The columns—which constitute a square sub-
matrix along with the first 47 rows—represent the ag-
gregated industry groups. The remaining rows consist
of:

• Inputs for which there is no corresponding indus-
try output listed such as “Educational and social
services, and membership organizations” or “Non-
comparable imports” (a total of 9 rows).

• “Compensation of employees”, which we treat as
equivalent to variable capital.

• “Other value added”, which we treat as being profit;

• “Finance”—we treat this as corresponding to inter-
est and include it in our measure of profit;

• “Real estate and royalties”; and

• “Indirect business tax and nontax liability”.

The last two items create some analytical problems.
At the aggregate level they are arguably part of surplus
value, yet both indirect taxes and rents appear as costs
from the point of view of the firms paying them, and
insofar as there is any tendency for equalization of the
rate of profit, we would expect this to be net rather than
gross of indirect taxes and rent payments. Pending a
more satisfactory solution, we have in the present study

5Specifically, the stock data came from files wealth14–wealth17
on diskette 4 of the BEA’s series of diskettes for Fixed Reproducible
Tangible Wealth in the United States, 1925–1989.

simply netted these out of all our calculations (i.e. ex-
cluded them from our measures of both costs and prof-
its).

The BEA figures are for fixed capital; we assumed
that in addition industries held stocks of working capi-
tal amounting to one month’s prime costs (where prime
costs included wages in the TSS case but not in the Sraf-
fian case).

It should be noted that modeling capital stocks is the
logical dual of modeling turnover times. We are assum-
ing that for the aggregate capital, turnover of circulating
capital is one month. This assumption is based upon the
heroic simplification that there exist 12 production peri-
ods per year corresponding to monthly salary payments,
and that the total stocks of goods held in the produc-
tion, wholesale and retail chain amount to one month’s
sales. That is to say, we assume that the turnover time
of variable capital is one month with wages paid in ad-
vance, and that circulating constant capital is purchased
simultaneously with labour. (In the calculation of Sraf-
fian prices we assume wages are paid at the end of the
month.) A more sophisticated study would look at com-
pany accounts for firms in each sector to build up a
model of the actual stocks of working capital. Indus-
tries operating just-in-time production will have consid-
erably lower stocks and thus faster turnover; for other
industries one month’s stocks may be an underestimate.

Correlations

The iterative procedures described earlier were used to
compute the total value of output, industry by industry,
using the labour value and Sraffian models. The TSS
estimate of total values was derived in one pass with-
out transforming the inputs. This gave three estimates
for the aggregate price vector; the correlations between
these estimates and observed prices are shown in Ta-
ble1.

Table 1: Correlations between sectoral prices and pre-
dictors, for 47 sectors of US industry

Observed price

Labour values 0.983

TSS prices 0.989

Sraffian prices 0.983

As can be seen, all the estimates are highly correlated
with market prices, with the TSS estimates performing
marginally better than the other two. The reported cor-
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relations are unweighted; each industrial sector is sim-
ply counted as one observation. We also calculated the
correlations between the logs of the variables—in line
with Shaikh’s argument (1984) for a multiplicative error
term in the price–value relationship. The ranking of the
correlations remained unchanged (labour values 0.980,
TSS prices 0.986, Sraffian prices 0.980). And we calcu-
lated weighted correlations, the weights supplied by the
predictor variable (e.g. the proportion of social labour
time accounted for by each sector in the case of labour
values): in this case the TSS prices are still ahead at a
correlation of 0.989, but labour values (0.987) did better
than Sraffian prices (0.985).

Conditional entropies

For each industry we then computed the ratios of the
market price of output to each of the estimators, giving
the ratio vectors market price/value, market price/TSS
price and market price/Sraffian price. The entropies of
these vectors were computed as follows.

1. A Gaussian convolution (with standard deviation
0.08) was run over the observations, with each ob-
servation weighted by the total money output of the
industry in question. This resulted in a tabulation
of the probability density function relating prices
to the various estimates. The theoretical basis for
the convolution is that each discrete observation is
in fact the mean figure for an entire industry: we
assume that the different producers in the industry
exhibit a normal distribution of their price–value
ratios around this mean. A Gaussian convolution
substitutes for each individual observation a normal
distribution having the same mean and the same in-
tegral. The density functions are shown in Figure1.

2. The entropy functionH = −πi log2 πi was inte-
grated over the range 0 to 3 with 1000 integration
steps. Taking 1000 integration steps corresponds
to a maximum possible value of the integral of
log2 1000= 9.96, the assumed accuracy of the data
in the tables. The interval [0,3] was chosen for in-
tegration as the probability densities for all estima-
tors fall to zero outside this range.

The resulting conditional entropies of market prices,
with respect to each of the estimators, are shown in Ta-
ble2. The fourth row of the table shows the total amount
of information about prices for the 47 industries that
each of the theories is able to produce. In terms of infor-
mation output the TSS model outranks the Sraffa model
which outranks the labour value model.

In terms of informationinput the ranking is the other
way round, as the Sraffa model requires an additional
47-element vector of capital stocks, and the TSS model
requires a further 47-element vector of input prices.
What is the additional information contained in each of
these vectors? If we assume them to be accurate to 3
figures, then each of these vectors contains 468 bits. But
it is probably unreasonable to require that figures for
prices and capital stocks be provided with this degree
of accuracy. Since the motivation of the TSS model,
at least, is to reproduce the Marxian technique for trans-
forming values into prices of production, we will assume
that the capital stock figures need only be as accurate
as the output prices generated by labour values alone—
roughly 1.9 bits per figure or 90 bits per vector. The
efficiency with which this additional information is used
in the Sraffian theory is low: for every one bit added to
the input data about 0.15 bits of information is added to
the output data.

It should be noted that there is a significant difference
between the additional information in the two cases. In
the TSS case, the extra information required is about
the variable being predicted by the model, namely price.
Ideally we should supply the prices lagged by one pro-
duction period as inputs to the calculation. Using input–
output table data this is not possible so we in fact used
current relative market prices. Given that the price data
in the tables reflect the average prices prevailing over a
year—considerably longer than any plausible estimate
of the “production period”—the distinction between the
current and previous period becomes blurred. The fig-
ures used cover the months January to December 1987.
Assuming a one-month advance of variable and circu-
lating capital, the period for which the input price data
should, ideally, have been obtained is December 1986 to
November 1987. Since these two periods are substan-
tially overlapping, the actual price data used must be a
very good approximation to the price data that we should
have used. Taking this into account, the TSS theory ap-
pears to have negative predictive efficiency. What we get
out is an estimate of this price vector that is less accurate
than the one we start out with. The information gain (ac-
tually, loss) here is thusH (Pt |Pt−1) − H (Et) ≥ −354
bits. The construction of a predictor using untrans-
formed input prices produces a net information gain only
if the correlation between the price vector for 1.xii.86 to
30.xi.87 and that for 1.i.87 to 31.xii.87 is less than the
correlation between the TSS estimator and the latter.
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Figure 1: Probability density functions for observed price/estimator (E1 = labour values,E2 = TSS prices,E3 =
Sraffian prices)

Sraffa
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values

x = p/e

p
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Table 2: Entropy calculations (P = observed price,E1 = labour values,E2 = TSS prices,E3 = Sraffian prices)

(P|E1) (P|E2) (P|E3)

Conditional entropy 8.028 7.538 7.734

Potential entropy 9.966 9.966 9.966

Transinformation,I (P; E)

– per prediction 1.938 2.428 2.232

– for all 47 industries 91.09 114.12 104.90

Subtract what is already known
about prices

0 −468 0

Net prediction 91.09 −354 104.90

Additional information input 0 90 90

Information gain per additional bit
input

– −3.93 0.153
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Table 3: Profit rates and organic composition, BEA fixed capital plus one month’s circulating constant capital as
estimate of capital stock (C). Summary statistics weighted by denominator in each case.

s/C C/v s/v

Mean 0.292 1.948 0.569

Standard deviation 0.221 3.042 0.500

Coefficient of variation 0.756 1.562 0.878

s/C andC/v s/C andv/C

(weighted byC) (weighted byC)

Correlation coefficient −0.454 0.780

5 Non-equalization of profit rates

Most accounts of the theory of value entail the expec-
tation that Sraffian prices of production should predict
actual prices substantially better than the simple labour
theory of value (LTV).6 We find this is not so. The Sraf-
fian predictor performs about the same as the LTV under
the correlation metric, and only slightly better under the
entropy metric.7 This finding demands some explana-
tion. The fact that the Sraffian predictor is not clearly
ahead of the LTV is comprehensible in terms of the fact
that profit rates, counter to Sraffian theory, tend to be
lower in industries with a high organic composition of
capital.

This is shown in both Table3 and Figure2. The ta-
ble displays the correlation coefficient between the rate
of profit and organic composition, and also between the
profit rate and the inverse of organic composition, across
the 47 sectors. The former coefficient—at−.454—is
statistically significant at the 1% level. If, however,
prices corresponded to the simple LTV we would expect
to find a positive linear relationship between profit rate
and the inverse of organic composition (in other words,
the relationship between profit rate and organic compo-
sition would be inverse, rather than negative linear), so
the second coefficient is perhaps more telling: at 0.780
it has ap-value or marginal significance level< 0.0001.

Figure2 shows three sets of points:

1. the observed rate of profit, measured ass/C (where
C denotes capital stock);

6The exception being Farjoun and Machover (1983).
7Correlation, which depends upon squared errors, lays more em-

phasis on a few big errors whereas entropy, which depends upon log
errors, lays more emphasis on a large number of small errors—hence
the possibility of a difference in assessment according to the two met-
rics.

2. the rate of profit that would be predicted on the ba-
sis of Volume I ofCapital, i.e. s′v/C, wheres′ is
the mean rate of exploitation in the economy; and

3. the rate of profit that would be predicted on the ba-
sis of prices of production (means/C).

It can be seen that the observed rates of profit fall
close to the rates that would be predicted by the Vol-
ume I theory. The exception is for a few industries with
unusually high organic compositions> 10.

But what are these industries? It transpires that they
fall into two categories, each arguably “exceptional”.
First there are the regulated utilities, electricity supply
and gas supply. Electricity supply has an organic com-
position of 23.15, and displays a rate of profit half way
between that predicted by the simple labour theory of
value and that predicted by the price of production the-
ory. The gas utilities have a rate of profit of 20% on
an organic composition of 10.4; the labour theory of
value would predict a profit rate of 7% and the produc-
tion price theory 32%. In each case the industry is reg-
ulated, and of course the regulatory system builds in the
assumption that the utilities should earn an average rate
of profit. Second, there are industries of high organic
composition in which rent plays a major role. At an or-
ganic composition of 16.4, the crude petroleum and nat-
ural gas industry has a rate of profit substantially in ex-
cess of that predicted by the labour theory of value, and
approximating more closely that predicted by an equal-
ization of the rate of profit. But an industry like this
would, on the basis of the Ricardian theory of differen-
tial rent, be expected to sell its product above its mean
value, and hence report above average profits. In a sim-
ilar position we find the oil refining industry with an or-
ganic composition of 9.4. Oil production and oil refining
have similar rates of profit, at 31% and 32%. Since the
industry is vertically integrated, this would indicate that
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Figure 2: Relationship between profit rates and organic composition, BEA fixed capital plus one month’s circulating
constant capital as estimate of capital stock
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the oil monopolies chose to report their super profits as
earned pro-rata on capital employed in primary and sec-
ondary production. In both cases, however, the super
profit can be explained by differential rent.

Sensitivity to turnover time

As mentioned above, we do not currently have indepen-
dent data on turnover times across the sectors, hence our
figures for sectoral capital stocks are not entirely sat-
isfactory. The most we can do in the present paper is
examine the sensitivity of the results to the (common)
assumption about turnover time. Table4 replicates Ta-
ble3 under the alternative assumption that industry cap-
ital stocks are composed of BEA fixed capital plus 2
months’ worth of wages plus 3 months’ worth of cir-
culating constant capital. The correlations indicative of
a negative or inverse association between profit rate and
organic composition are still statistically significant, and
apparently robust with respect to this sort of change.
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Table 4: Profit rates and organic composition, BEA fixed capital plus 3 months’ circulating constant capital and 2
months’ wages as estimate of capital stock (C)

s/C C/v

Mean 0.239 2.218

Standard deviation 0.133 3.146

Coefficient of variation 0.558 1.418

s/C andC/v s/C andv/C

(weighted byC) (weighted byC)

Correlation coefficient −0.457 0.650
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