
GPU-Optimized Coarse-Grained MD Simulations of Protein and
RNA Folding and Assembly

Andrew J. Proctor, Tyson J. Lipscomb, Anqi Zou
Department of Computer Science

Wake Forest University
Winston-Salem, NC 27109

Email: {proca06, tysonlipscomb,
anqizou}@gmail.com

Joshua A. Anderson
Department of Chemical Engineering

University of Michigan
Ann Arbor, Michigan 48109
Email: joaander@umich.edu

Samuel S. Cho*
Departments of Physics and Computer Science

Wake Forest University
Winston-Salem, NC 27109

Email: choss@wfu.edu

ABSTRACT

Molecular dynamics (MD) simulations provide a
molecular-resolution physical description of the fold-
ing and assembly processes, but the size and the
timescales of simulations are limited because the
underlying algorithm is computationally demand-
ing. We recently introduced a parallel neighbor list
algorithm that was specifically optimized for MD
simulations on GPUs. In our present study, we an-
alyze the performance of the algorithm in our MD
simulation software, and we observe that the major
of the overall execution time is spent performing the
force calculations and the evaluation of the neigh-
bor list and pair lists. The overall speedup of the
GPU-optimized MD simulations as compared to the
CPU-optimized version is N-dependent and ∼30x for
the full 70s ribosome (10,219 beads). The pair and
neighbor list evaluations have performance speedups
of ∼25x and ∼55x, respectively. We then make di-
rect comparisons with the performance of our MD
simulation code with that of the SOP model imple-
mented in the simulation code of HOOMD, a leading
general particle dynamics simulation package that is
specifically optimized for GPUs.

I INTRODUCTION

All cellular processes occur because biomolecules such
as proteins and RNA fold and assemble into well-
defined structures that allow them to perform specific
functions [1] including enzyme catalysis, structural
support, transport, and regulation. Understanding
how biomolecules carry out their functions have di-
rect medical applications because some functions are
deleterious, such as the telomerase enzyme that pro-

motes cancer, and misfolding events are widely ac-
cepted to lead to diseases such as Alzheimer’s and
Parkinson’s.

A powerful computational tool for studying bimolec-
ular folding and assembly mechanisms is molecular
dynamics (MD) simulations, which allows the study
of atomic and molecular systems, usually represented
as spherical beads, and how they interact and be-
have in the physical world. The physical description
of biomolecules in MD simulations is determined by
an energy potential, which can include short-range
bonding interactions and long-range van der Waals
(often modeled as a Lennard-Jones potential) or elec-
trostatic interactions. The gradient of the energies is
used to compute the set of independent forces act-
ing on each bead, which are in turn used to calcu-
late the a new set of positions and velocities that
determines how it moves in time. Although the MD
simulation protocol is relatively straightforward, it is
computationally demanding because the long-range
interactions scales as O(N2) because each pair of in-
dependent interactions between beads i and j is con-
sidered. To reduce the computational demands of
the long-range interactions, neighbor list and cell list
algorithms consider only interactions that are close
in distance, and these approaches scales as O(Nr3c),
where rc is a cutoff distance.

An approach that is particularly well-suited for per-
forming MD simulations with a demonstrated track
record of success is the use of graphics processor units
(GPUs) (Fig. 1). Recently, several studies developed
and demonstrated that GPU-optimized MD simula-
tions, including the empirical force field MD simula-
tion software NAMD [2] and AMBER [3] and the
general purpose particle dynamics simulation soft-

Page 1 of 11
c©ASE 2012ISBN: 978-1-62561-001-0 63

Figure 1: MD simulations of biomolecular systems on GPUs. (A) A schematic of the processing flow of CPUs
and GPUs. In a single-core processor, a single thread sequentially executes commands while GPUs have
many threads that executes commands in parallel. (B) A cartoon of two typical proteins with the native
interactions between residues shown. Each interaction can be computed independently in MD simulations,
which makes GPUs ideal architectures for implementation of MD simulation algorithms.

ware suites HOOMD [4] and LAMMPS [5], can sig-
nificantly increase performance. MD simulations lend
themselves readily to GPUs because many indepen-
dent processor cores can be used to calculate the in-
dependent set of forces acting between the beads in
a MD simulation.

In our present study, we implement a GPU-optimized
parallel Verlet neighbor list algorithm, and we ana-
lyze its performance. We first compare the GPU-
optimized MD simulation performance to a CPU-
optimized implementation of the same MD simula-
tion approach. We then evaluate the performances
of the individual components of the MD simulation
algorithm to isolate the major bottlenecks that still
remain. We then make direct comparisons to the
HOOMD MD simulation software by comparing the
performances the full SOP model implemented in our
in-house simulation code and in HOOMD.

1 MD SIMULATION ALGORITHM

MD simulations are now indispensible tools for study-
ing biomolecular folding and assembly processes at a
molecular resolution. MD simulate systems of atomic
or molecular structures and the way they interact and
behave in the physical world. The physical descrip-
tion of the biomolecule in MD simulations is deter-
mined by an energy potential. The most basic de-
scription of a biomolecule must be an energy poten-
tial that includes the short-range connectivity of the
individual components through a bond energy term
and long-range interactions of the spherical compo-
nents through attractive and repulsive energy terms.
More sophisticated descriptions can include electro-
static charge interactions, solvation interactions, etc.
One example is the Self-Organized Polymer (SOP)
model energy potential [6, 7], which we will describe
in detail in the next section. Regardless, the physical
description of biomolecules essentially become spher-

Page 2 of 11
c©ASE 2012ISBN: 978-1-62561-001-0 64

ical nodes that are connected by edges that corre-
spond to interactions. The total structure (i.e., the
collection of nodes and edges) within a molecular dy-
namics system can be thought of as an abstraction
of a much smaller collection of physical entities (i.e.,
nodes) that acts as a single, indivisible unit within
the system.

Once the energy potential is determined, one must
determine the rules for moving the biomolecule over
time. The molecular dynamics algorithm is as fol-
lows: given a set of initial positions and velocities,
the gradient of the energy is used to compute the
forces acting on each bead, which is then used to com-
pute a new set of positions and velocities by solving
Newton’s equations of motion (~F = m~a) after a time
interval ∆t. The process is repeated until a series of
sets of positions and velocities (snapshots) results in
a trajectory [8].

Since the equations of motion cannot be integrated
analytically, many algorithms have been developed to
numerically integrate the equations of motion by dis-
cretizing time ∆t and applying a finite difference inte-
gration scheme. In our study, we use the well-known
Langevin equation for a generalized ~F = m~a =
−ζ~v + ~Fc + ~Γ where ~Fc = −∂~v∂~r is the conformational
force that is the negative gradient of the potential en-
ergy ~v with respect to ~r. ζ is the friction coefficient
and ~Γ is the random force.

When the Langevin equation is numerically inte-
grated using the velocity form of the Verlet algorithm,
the next position of a bead after an integration step
∆t is given by:

r(t+ ∆t) = ~r(t) + ∆t~v(t) +
∆t2

2m
~F (t)

where m is the mass of a bead. Similarly, the velocity
after ∆t is given by:

v(t+ ∆t) =

(
1− ∆tζ

2m

)(
1− ∆tζ

2m
+

(
∆tζ

2m

)2
)
v(t)

+
∆t

2m

(
1− ∆tζ

2m
+

(
∆tζ

2m

)2
)

The MD simulation program first starts with an ini-
tial set of coordinates, r0, and a random set of ve-
locities v0. The above algorithm is repeated until a
certain number of timesteps is completed, thus end-
ing the simulation.

2 COARSE-GRAINED MD SIMULA-
TIONS

When performing a molecular dynamics simulation
there are a wide range of levels of precision that can
be used depending on the desired degree of accuracy
(Fig. 2). If a detailed model is desired, it is possible
to model a biomolecule at the quantum level, simu-
lating the behavior of each individual electron within
the molecular structure. Unfortunately a quantum-
mechanical description demands a great deal of com-
putational resources to simulate and greatly limit the
size of systems and the length of time that can be sim-
ulated. By current standards, a quantum-mechanical
simulation is restricted to only about 100 atoms and
the timescale is on the order of pico- or femtoseconds.

An obvious solution to the computational problems
introduced by quantum-mechanical molecular dy-
namics simulations would be to simulate a system
at the atomistic level, representing each atom with a
bead. This greatly increases the size of molecules that
can be simulated compared to quantum level simula-
tions. Atomistic resolution folding simulations are,
however, restricted to very small (about 50 amino
acids long), fast-folding (less than a microsecond)
proteins at atomistic detail (see [9], for example),
even though biologically relevant biomolecules are
much larger and can fold much more slowly. By
comparison, a single protein chain is, on average, 400
amino acids long and takes considerably longer than a
millisecond to fold. To increase the timescales, some
researchers use coarse-grained simulations that still
accurately capture folding and binding mechanisms of
biologically relevant protein and RNA biomolecules
[10, 11]. For these classes of simulations, groups of
atoms are typically represented as a bead or group of
beads such that the degrees of freedom that are con-
sidered to be negligible in the overall folding mecha-
nism are excluded, thereby reducing the total number
of simulated particles so that the simulations become
more feasible to compute [7, 12].

In the Self-Organized Polymer (SOP) Model, a
coarse-grained approach that has been demonstrated
to reproduce experiments remarkably well [6,7,13,14],
the energy potential that describes the biomolecule,
and hence dictates how it moves in time, is as follows:

Page 3 of 11
c©ASE 2012ISBN: 978-1-62561-001-0 65

Figure 2: Resolution and sampling issues in MD simulations. (A) Different levels of MD simulation resolu-
tions. In the coarse-grained approach, the negligible degrees of freedom are reduced by representing groups
of atoms as beads. With fewer interactions, the timescales of the simulation can be increased because the
computational demands are significantly reduced. (B) The coarse-graining of the ribosome structure. From
the full atomistic structure, one can coarse-grained the ribosome to be represented beads for each residue
and nucleotide.

V (~r) =VFENE + VSSA + V ATTV DW + V REPVDW

=−
N−1∑
i=1

k

2
R2

0 log

[
1−

(
ri,i+1 − r0i,i+1

)2
R2

0

]

+
N−2∑
i=1

εl

(
σ

ri,i+2

)6

+
N−3∑
i=1

N∑
j=i+3

εh

(r0i,j
rij

)12

− 2

(
r0i,j
rij

)6
∆i,j

+
N−3∑
i=1

N∑
j=i+3

εl

(
σ

ri,j

)6

(1−∆i,j)

The first term is the finite extensible nonlinear elas-
tic (FENE) potential that connects each bead to its

successive bead in a linear chain. The parameters
are: k = 20kcal/(mol · Å2), R0 = 0.2nm, r0i,i+1 is
the distance between neighboring beads in the folded
structure, and ri,i+1 is the actual distance between
neighboring beads at a given time t.

The second term, a soft-sphere angle potential, is ap-
plied to all pairs of beads i and i + 2 to ensure that
the chains do not cross.

The third term is the Lennard-Jones potential, which
is used to stabilize the folded structure. For each
protein-protein, protein-RNA, or RNA-RNA bead
pair i and j, such that |i − j| > 2, a native pair
is defined as having a distance less than 14Å 11Å or
8Å respectively, in the folded structure. If beads i
and j are a native pair, ∆i,j = 1, otherwise ∆i,j = 0.
The r0i,j term is the actual distance between native
pairs at a given time t.

Page 4 of 11
c©ASE 2012ISBN: 978-1-62561-001-0 66

The fourth term is a repulsive term between all pairs
of beads that are non-native, and σ is chosen to be
7.0Å , 5.4Å , or 3.8Å depending on whether the pair
involves protein-protein, protein-RNA, or RNA-RNA
interactions, respectively.

The overall goal of the coarse-graining MD approach
is to increase the timescales of the simulations so
that conformation sampling is enhanced while still
retaining the essential chemical details that capture
the physics of the biomolecular folding and assembly
processes (Fig. 2). It is important to note that the
interactions in the van der Waals energies (and thus
forces) scales as O(N2), which can be avoided using a
truncation scheme such as a neighbor list algorithm,
which we describe below.

II GPU-OPTIMIZED MD SIMULATIONS

At each timestep in a simulation, a variety of forces
must be calculated for each bead. Since the forces on
each bead can be calculated independently of each
other at every timestep, individual threads can be
assigned to each force that acts on each bead (Fig.
1). For example, if five distinct types of forces are
being simulated on one hundred beads, a total of
five hundred threads would be used. Each one of the
threads can then perform the necessary calculations
in parallel, greatly reducing the computation time of
a simulation. Updating the positions and velocities
are likewise highly parallel operations.

While calculating forces acting on each bead and up-
dating their positions and velocities are by themselves
parallel tasks, the entire operation is an ordered, se-
rial process. At the beginning of each timestep the
pair list is calculated, along with the neighbor list
if sufficient time has passed since the last update.
Positions are then updated based on the current dis-
tribution of forces. Once this has taken place, the
forces acting on the beads based on their new posi-
tions must be calculated. Finally, the velocities of
each bead are updated based on the forces present
in the current timestep. Between each of these steps
the entire process must be synchronized in order to
perform accurate computations. An MD simulation
can therefore be thought of as a set of highly parallel
tasks that must be performed in a specific order.

When optimizing a CPU-based program or algorithm
for use on a GPU, there are many different factors
that must be taken into account. Though the type of
calculations that CPUs and GPUs perform are funda-
mentally the same, the ways that they go about per-

forming these calculations can vary due to differences
in hardware implementations. The parallel hardware
of GPUs and their different memory hierarchies and
access patterns place constraints on the programmer
that are often not necessary to address when writing
a CPU-based program.

1 TYPE COMPRESSION

A trivial approach to minimize memory transfer be-
tween the CPU and GPU is to use the smallest data
types possible. For integer data types, the minimum
size of each variable one can choose is determined by
the maximum value that it is expected to hold. For
example, if 8 bits were allocated to assign indices for
each bead in an MD simulation, the maximum num-
ber of beads in the simulation would be 28 = 256.
While the minimizing data types limits the size of
the system one can simulate, the benefit is the lower
latency that results in faster performance.

One limit to this approach is that the available built-
in sizes of data types in C/C++, CUDA, and most
other programming languages are limited and fixed.
Therefore, it is possible, and indeed likely, that the
optimal sized data type for a simulation may be ei-
ther too small to store the necessary information or
larger than necessary, leading to wasted space in the
form of bits that will never be used and slow down
performance.

In our implementation of the SOP model MD simula-
tion code, we used arrays of indices for the beads in-
volved in a native or non-native Lennard-Jones inter-
actions. The largest biomolecule we studied was the
70s ribosome, which is represented by 10,219 beads.
The minimum number of bits required to represent
the indices of the beads, n, is dlog2(n)e, which for
the 70s ribosome is dlog2(10, 219)e = 14. Using 14
bits allows a maximum of 214 = 16, 384 beads to be
represented in this way.

Unfortunately, there are no 14-bit data types in
CUDA or C/C++. The next largest available data
type, ushort (unsigned short integer), occupies 16 bits
of memory, which is enough to represent 216 = 65, 536
different values. Not only is this significantly more
than necessary, two bits will remain unused (Fig.
3A).

The weight and minimum energy distance of inter-
action between the beads is determined by whether
the bead represents an amino acid or nucleic acid of
a protein or RNA, respectively. There are a total

Page 5 of 11
c©ASE 2012ISBN: 978-1-62561-001-0 67

Figure 3: Schematic of the type compression optimization for representing the indices and types of the in-
teracting beads. (A) A total of 48 bits are required when using two 16-bit ushorts and two 8-bit uchars to
represent two interaction indices and two interaction types. A total of 16 bits will always be unused. The
bits that will be used in the compressed type is highlighted in red. (B) Only 32 bits are required when using
a single 32-bit ushort2 to represent two interaction indices and two interaction types. Note that there are
no unused bits when simulating the 70s ribosome (10,219 beads).

of three different types of interactions, namely the
protein-protein, protein-RNA, and RNA-RNA inter-
actions, meaning that no more than 2 bits would be
necessary to represent these three types. The small-
est available integral data type in C/C++ and CUDA
is the uchar (unsigned character), which is an 8-bit
data type capable of representing 28 = 256 different
values. If we used uchar to represent the three dif-
ferent interaction types, 6 bits will always be unused,
leading to a waste of storage space and increase in
memory transfer time (Fig. 3A).

Since the indices for the beads in the 70s ribosome
could be represented by using 14 bits and the type of
interaction could be represented by using only 2 bits,
we developed an approach to combine these two vari-
ables into a single 16-bit ushort value to completely
eliminate the wasted space when using a ushort and a
uchar to represent each of them individually [15]. The
total memory requirement for each entry is reduced
33%, and the number of read and write operations is

reduced by half because only one data type will be
transferred instead of two.

In each interaction there are a total of two different
beads that must be stored, so two ushort values will
need to be stored. CUDA provides an implementa-
tion of a ushort2 data type, which is essentially two
16-bit ushort values combined into a 32-bit data type.
The ushort2 data type can be thought of a two di-
mensional vector with an x and y component. Using
a ushort2 instead of two ushort values takes up the
same amount of memory, but can reduce the number
of memory reads required to transfer data from main
memory to thread-level memory, depending on access
patterns. These components can be accessed in or-
der to extract either of the two ushort values stored
in the ushort2.

We combined the interaction index and interaction
type into a single x or y component of a ushort2 by
using the 2 highest-order bits of one of the 16-bit

Page 6 of 11
c©ASE 2012ISBN: 978-1-62561-001-0 68

//The 2-bit type value and the 14-bit index value are

//combined into a single 16-bit value by left shifting

//the type value and then ORing the results with the

//14-bit index value.

#define COMBINE(type, idx) ((type << 14) | idx)

//The type of interaction stored in a type compressed

//value can be retrieved by right shifting the value

//by 14 bits

#define GET_TYPE(combined) ((combined) >> 14)

//The index of an interaction stored in a type compressed

//value can be retrieved by ANDing the value with 0x3FFF

//(equivalent to the binary value 0011 1111 1111 1111),

//which sets the two high-order bits to 0

//while leaving the 14 low-order bits unchanged.

#define GET_IDX(combined) ((combined) & 0x3FFF)

Figure 4: Type compression and decompression code in C.

ushort2 components to store the type of the interac-
tion and the 14 low-order bits to store the identifying
number of the bead (Fig. 3B). These values are com-
bined by setting the component’s value to be equal
to the value of the interaction type left shifted by 14
bits and using a bitwise OR operation to set the low-
order fourteen bits to the identifying bead number.
Once these values are stored in a ushort2 component,
they can be retrieved very easily. To find the type of
the interaction that is stored in the component, the
value is simply right shifted by 14 bits. Alternatively,
to find the identifying number stored in the variable,
a bitwise AND operation is performed to set the 2
highest-order bits to zero, leaving the 14 lowest-order
bits unchanged (Fig. 4).

2 PARALLEL NEIGHBOR LIST ALGO-
RITHM

The calculation of the Lennard-Jones forces can be
the most computationally intensive portion of a MD
simulation because it is evaluated between pairs of all
particles in the systems i and j, resulting in an algo-
rithm that scales O(N2). However, when the parti-
cles are sufficiently far apart from each other, the in-
teraction force between them is effectively zero. Not-
ing this, the Verlet neighbor List Algorithm [16] first
calculates the distance between each pair and con-
structs a subset neighbor list of particle pairs whose
distances is within a ”skin” layer radius, rl. The
neighbor list is updated every n time steps, and only
the interactions between pairs of particles within a

distance cutoff radius, rc, are computed, resulting in
a further subset pair list (Fig. 5). Verlet’s original pa-
per [16] chose 2.5σ and 3.2σ for rc and rl, respectively,
where σ is the radius of the interacting particles. The
resulting algorithm then scales O(Nr3c) ∼ O(N).

Though many portions of MD simulation algorithms
lend themselves to parallelization, the algorithm used
to calculate the neighbor and pair lists in the Verlet
neighbor list algorithm cannot be modified to run in
parallel, at least in the form originally introduced by
Verlet [16]. In that algorithm, computing a subset list
is inherently sequential (Fig. 5C). It can be computed
on the GPU, but a single GPU core is very slow. Al-
ternatively it could be computed on the CPU, but the
resulting list must be transferred back to the GPU,
a major bottleneck as we described above. We there-
fore developed an algorithm that involves only paral-
lel operations so that it can be implemented entirely
on the GPU [15] (Fig. 5D).

In the parallel neighbor list algorithm, we take advan-
tage of the highly optimized GPU library functions in
CUDA Data Parallel Primitives Library (CUDPP),
namely the key-value sort and parallel scan opera-
tions. The first step is to perform a key-value sort
on the data using the Member List as keys and the
Master List as the values. Those interactions repre-
sented in the Master List are evaluated to be within
the distance cutoff and the Member List holds val-
ues of ”true” or ”false” and represented with a zero
or one. A sorting of these values in numerical order
will place the ”true” values at the top of the Member

Page 7 of 11
c©ASE 2012ISBN: 978-1-62561-001-0 69

Figure 5: Verlet neighbor list algorithm (A) In the original Verlet neighbor list algorithm, out of a master list
of all pairs of possible interactions, a neighbor list is constructed of interactions within a ”skin” layer radius
(rl) distance cutoff. The neighbor list is updated every n timesteps from which a pair list is constructed of
interactions within a cutoff radius (rc) distance cutoff. At every timestep, the forces are evaluated only for
the members of the pair list. (B) The structure of tRNAphe is shown with blue lines indicating members of
the pair list (left) and all possible interaction pairs (right). (C) A schematic of the original Verlet neighbor
list algorithm that involves an inferentially sequential implementation. (D) A parallel neighbor list algorithm
that is specifically optimized for GPUs that involves only parallel operations.

List and the ”false” values at the bottom. The next
step would be to copy only those interactions that
are within the distance cutoff to the Neighbor List in
parallel, but one must first know how many interac-
tions to copy. We therefore perform the parallel scan
operation to produce the total number of ”true” in-
teractions and then copy only those interactions to
the Neighbor List.

Overall, the parallel neighbor list algorithm results
in a neighbor list that is equivalent to the one cre-
ated by the original Verlet neighbor list algorithm,
and it only consists of parallel operations that can be
performed entirely on the GPU without transfer of in-
formation to and from the CPU that would degrade
the performance.

3 PERFORMANCE SPEEDUP OF GPU-
OPTIMIZED SOP MODEL MD SIMU-
LATIONS IS N-DEPENDENT

We implemented the parallel neighbor list algorithm
in a SOP Model MD simulation code that is opti-
mized for the GPU and compared it to an equiva-
lent SOP Model MD simulation code with the Verlet
neighbor list algoirthm. We then performed 1 mil-
lion timesteps of MD simulations for biomolecular
systems of varying size. The biomolecular systems
include a tRNAphe (76 beads), 16s ribosome (1530
beads), 30s ribosome (3,883 beads), 50s ribosome
(6,336 beads), and 70s ribosome (10,219 beads). To
evaluate the contributions of the individual compo-
nents of the MD simulation execution, we calculated
the execution times for the force evaluation, neigh-
bor and pair list evaluations of the parallel neighbor
list algorithm, the position and velocity updates, and
general logging and I/O (Fig. 6A). The force and
the neighbor and pair list evaluations of the parallel

Page 8 of 11
c©ASE 2012ISBN: 978-1-62561-001-0 70

Figure 6: Relative execution times and speedup of different components of the SOP model MD simulations
with the parallel neighbor list algorithm. (A) The percentages of the execution times are shown for different
components of the GPU-optimized MD simulations biologically relevant systems. (B) The speedup of the
different components of the GPU-optimized MD simulations are shown as compared to the equivalent single
quad-core CPU-optimized MD simulations.

neighbor list algorithm accounts for almost the en-
tire overall execution time of the MD simulations in
all cases.

Then, we compared the N-dependent performance of
the GPU-optimized versus the CPU-optimized MD
simulations to calculate the overall difference between
the two approaches. We observe an N-dependent
speedup in which the smallest system we studied, the
tRNAphe, is actually slower on the GPU, presumably
because any gain in the speedup of the calculations
on the GPU does not overcome the time it takes to
transfer of information to the GPU. In the full 70s ri-
bosome, however, we observe a ∼30x speedup in the
GPU-optimized MD simulations as compared to the
CPU-optimized version. Furthermore, the Pair List
and Neighbor List performances speedups were ∼25x
and ∼55x, respectively (Fig. 6B). Interestingly, the
speedup of the calculations of the new positions was
∼145x (Fig. 6B), but it contributes very little to the
overall speedup because it represents a small portion
of the overall execution time (Fig. 6A).

4 PERFORMANCE COMPARISON WITH
HOOMD

To benchmark the performance of the parallel neigh-
bor list algorithm, we compared the performance of
our simulation code with that of HOOMD. HOOMD
is a widely used general purpose particle dynam-
ics simulation software suite that is implemented on
GPUs. Its versatile and flexible code consists of many

different types of potentials that include the harmonic
bond and angle and Lennard-Jones potentials. As
such, the SOP model can be largely implemented on
HOOMD. The energy potential of the SOP model as
we implemented in the HOOMD simulation code is
as follows:

V (~r) =Vbond + Vangle + V ATTV DW + V REPVDW

=
N−1∑
i=1

kr
2

(
ri,i+1 − r0i,i+1

)2
+

N−2∑
i=1

kθ
2

(
θi,i+1,i+2 − θ0i,i+1,i+2

)2
+
N−3∑
i=1

N∑
j=i+3

εh

(r0i,j
rij

)12

− 2

(
r0i,j
rij

)6
∆i,j

+
N−3∑
i=1

N∑
j=i+3

εl

(
σ

ri,j

)6

(1−∆i,j)

The first and second terms are the short-range har-
monic bond and angle potentials The parameters are:
k = 20kcal/mol and r0i,i+1 and θ0i,i+1,i+2 is the dis-
tance and angle between neighboring beads in the
folded structure, and ri,i+1 and θ0i,i+1,i+2 are the ac-
tual distance and angle between neighboring beads at
a given time t, respectively. While these terms are ex-
plicitly different, they serve the same purpose as the
original SOP model we implemented in our MD sim-
ulation code. Furthermore, we expect qualitatively

Page 9 of 11
c©ASE 2012ISBN: 978-1-62561-001-0 71

Figure 7: Execution times comparisons with HOOMD. (A) Comparison of execution times of the SOP Model implemented

in our MD simulation code as compared to the SOP model implemented in HOOMD for system sizes up to ∼1,000 beads, which

was the maximum hardware limit on the NVIDIA Tesla C2070. (B) The same comparison for systems sizes up to ∼10,000

beads, which is the maximum hard limit for our simulation code on the NVIDIA Tesla C2070.

identical simulation results.

The third and fourth terms are the Lennard-Jones in-
teractions that are identically implemented. As such,
the performance scales O(N). The HOOMD code is
designed to accommodate the Lennard-Jones inter-
actions of a homogeneous and heterogeneous parti-
cle systems of different types of particles with differ-
ent r0i,j . We note, however, that the implementation
of the Lennard-Jones interactions requires a different
type for each interaction pair because the r0i,j is differ-
ent for each native interaction pair, and the memory
storage scales as O(N2). The HOOMD code was not
designed to handle this many different ”types” of in-
teractions, and the current release version of the code
limits the number of types so that the parameters fit
in shared memory. We therefore explicitly removed
the limit so that the GPU hardware memory will in-
stead determine the limit on the number of types.

We implemented the SOP model into HOOMD and
compared our simulation code to that of HOOMD.
For the neighbor list algorithm, we ensured that the
number of particles were approximately the same by
comparing the average number of particles in the
neighbor list for each particle in both our MD sim-
ulation code and in HOOMD. We chose this mea-
sure for comparison because the HOOMD code al-
ready performed this calculation, however, we do not
anticipate significant differences in our conclusions
with other reasonable measures. Since the original
HOOMD code has a limit on the number of different
types of interactions, we trivially modified the code
to remove this software limit. However, there also
exists a hardware limit in that the memory available
to the GPU is finite. In the NVIDIA C2070 we used
for our simulations, that limit is 6 GB of memory.

For systems less than ∼400 beads, HOOMD has
a lower execution time than our MD simulation
code (Fig. 7A). However, for larger systems up to
∼1,000 beads, our simulation code execution time is
markedly less. After that point, the HOOMD code
can no longer execute the simulations due to memory
limits. However, our simulation code is able to han-
dle larger systems because of the type compression
and other optimization techniques we used to reduce
memory transfer bottlenecks, and we again observe
N-dependent execution times up to ∼10,000 beads
(Fig. 7B).

III CONCLUSIONS

We analyzed the performance of a SOP model MD
simulation code with a parallel neighbor list algo-
rithm on the GPU. We observe that the force evalu-
ation and the neighbor list calculations comprises of
the largest percentage of the overall execution times.
When compared to an equivalent CPU-optimized
SOP model MD simulations on a single core, we ob-
serve an N-dependent speedup in which the small-
est systems are actually slower on the GPU but the
largest system (10,219 beads) we studied is 30x
faster. The pair and neighbor list calculations of the
parallel neighbor list algorithm calculations were ob-
served to have speedups of 25x and 55x, respectively.

We next implemented the SOP model algorithm into
HOOMD, a widely used leading general particle dy-
namics simulation software suite, to benchmark the
performance of our simulation code. Since HOOMD
is was not originally intended to be optimized for
the SOP model algorithm, our results would be ex-
pected to favor our MD simulation code. We observe

Page 10 of 11
c©ASE 2012ISBN: 978-1-62561-001-0 72

an N-dependent execution times in which HOOMD
performs the simulations faster for smaller systems
(∼400 beads), but our simulation code is faster for
larger systems up to ∼1,000 beads, which is the limit
of what can be performed on a NVIDIA Tesla C2070
due to hardware memory constraints. However, our
present simulation code can accommodate systems of
∼10,000 beads.

ACKNOWLEDGMENTS

TJL acknowledges financial support from the Wake
Forest University Computer Science Graduate Fel-
lowship for Excellence. JAA was supported by the
DOD/AD(R&E) under Grant No. N00244-09-1-
0062. SSC is grateful for financial support from
the National Science Foundation (CBET-1232724)
and the Wake Forest University Center for Molecular
Communication and Signaling.

References

[1] C. B. Anfinsen, “Principles that govern the fold-
ing of protein chains”, Science, vol. 181, no. 96,
pp. 223–30, 1973.

[2] J. E. Stone, D. J. Hardy, I. S. Ufimtsev, and
K. Schulten, “GPU-accelerated molecular mod-
eling coming of age”, Journal of Molecular
Graphics and Modeling, vol. 29, no. 2, pp. 116–
25, 2010.

[3] A. W. Gotz, M. J. Williamson, D. Xu, D. Poole,
S. Le Grand, and R. C. Walker, “Routine mi-
crosecond molecular dynamics simulations with
amber on gpus. 1. generalized born”, Journal of
Chemical Theory and Computation, vol. 8, no.
5, pp. 1542–1555, 2012.

[4] J. A. Anderson, C. D. Lorenz, and A. Traves-
set, “General purpose molecular dynamics simu-
lations fully implemented on graphics processing
units”, Journal of Computational Physics, vol.
227, no. 10, pp. 5342–5359, 2008.

[5] S. Plimpton and B. Hendrickson, “A new par-
allel method for molecular dynamics simulation
of macromolecular systems”, Journal of Compu-
tational Chemistry, vol. 17, no. 3, pp. 326–337,
1996.

[6] C. Hyeon, R. I. Dima, and D. Thirumalai,
“Pathways and kinetic barriers in mechanical
unfolding and refolding of RNA and proteins”,
Structure, vol. 14, no. 11, pp. 1633–1645, 2006.

[7] D. L. Pincus, S. S. Cho, C. Hyeon, and D. Thiru-
malai, “Minimal models for proteins and RNA
from folding to function”, Progress in Molecular
Biology and Translational Science, vol. 84, pp.
203–50, 2008.

[8] M. P. Allen and D. J. Tildesley, Computer Simu-
lation of Liquids, Oxford University Press, USA,
1989.

[9] V. A. Voelz, G. R. Bowman, K. Beauchamp, and
V. S. Pande, “Molecular simulation of ab initio
protein folding for a millisecond folder NTL9(1-
39)”, Journal of the American Chemical Society,
vol. 132, no. 5, pp. 1526–8, 2010.

[10] C. Clementi, H. Nymeyer, and J. N. Onuchic,
“Topological and energetic factors: what de-
termines the structural details of the transition
state ensemble and ”en-route” intermediates for
protein folding? an investigation for small globu-
lar proteins”, Journal of Molecular Biology, vol.
298, no. 5, pp. 937–53, 2000.

[11] J. E. Shea and C. L. Brooks, “From folding theo-
ries to folding proteins: a review and assessment
of simulation studies of protein folding and un-
folding”, Annual Review of Physical Chemistry,
vol. 52, pp. 499–535, 2001.

[12] R. D. Hills and C. L. Brooks, “Insights from
Coarse-Grained Go models for protein folding
and dynamics”, International Journal of Molec-
ular Sciences, vol. 10, pp. 889–905, Mar. 2009.

[13] A. Zhmurov, A. Brown, R. Litvinov, R. Dima,
J. W. Weisel, and V. Barsegov, “Mechanism of
fibrin(ogen) forced unfolding”, Structure, vol.
19, no. 11, pp. 1615–1624, Nov. 2011.

[14] M. Guthold and S. S. Cho, “Fibrinogen unfold-
ing mechanisms are not too much of a stretch”,
Structure, vol. 19, no. 11, pp. 1536–1538, Nov.
2011.

[15] T. J. Lipscomb, A. Zou, and S. S. Cho, “Par-
allel verlet neighbor list algorithm for GPU-
optimized MD simulations”, ACM Conference
on Bioinformatics, Computational Biology and
Biomedicine, pp. 321–328, 2012.

[16] L. Verlet, “Computer ”Experiments” on clas-
sical fluids. i. thermodynamical properties of
Lennard-Jones molecules”, Physical Review, vol.
159, no. 1, pp. 98, 1967.

Page 11 of 11
c©ASE 2012ISBN: 978-1-62561-001-0 73

	Introduction
	MD Simulation Algorithm
	Coarse-Grained MD Simulations

	GPU-Optimized MD Simulations
	Type Compression
	Parallel Neighbor List Algorithm
	Performance Speedup of GPU-Optimized SOP Model MD Simulations is N-Dependent
	Performance Comparison with HOOMD

	Conclusions

