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We compute the analogue Hawking radiation for modes which possess a small wave vector perpen-

dicular to the horizon. For low frequencies, the resulting mass term induces a total reflection. This

reflection is accompanied by an extra mode mixing which occurs in the supersonic region, and which

cancels out the infrared divergence of the near horizon spectrum. As a result, the amplitude of the

undulation (0-frequency wave with macroscopic amplitude) emitted in white hole flows now saturates at

the linear level, unlike what is found in the massless case. In addition, we point out that the mass

introduces a new type of undulation which is produced in black hole flows, and which is well described in

the hydrodynamical regime.
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I. INTRODUCTION

Recent studies of the analogue Hawking radiation [1]
have shown that a standing (zero-frequency) wave is emit-
ted in the supersonic region of white hole flows [2,3]. This
wave possesses a macroscopic amplitude and a short wave-
length fixed by the dispersive properties of the medium.
Interestingly, it corresponds to some well-known solutions
in hydrodynamics [4,5], namely undulations associated
with hydraulic jumps. In addition, undulations have been
recently observed in water tank experiments [7,8] aiming
to detect the analogue Hawking radiation, but their relation
with the Hawking effect was not pointed out. This relation
was understood in the context of atomic Bose-Einstein
condensates (BEC), where the emission of an undulation
was explained in terms of a combination of several effects.
First, n!, the spectrum of massless phonons spontaneously
produced à la Hawking from the sonic horizon diverges
like 1=! for ! ! 0, as in the Planck distribution. Second,
pU ¼ p!¼0, the wave number of the undulation is a non-
trivial solution of the dispersion relation, and third, its
group velocity is oriented away from the horizon.

To see this in more detail, first note that the Bogoliubov
dispersion relation in a one-dimensional stationary flow,
and for a longitudinal wave vector p, is

� ¼ !� vp ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p2ð1þ �2p2Þ

q
; (1)

where ! is the conserved frequency, v is the flow velocity,
c is the speed of sound, and � ¼ ℏ=2matc is the healing
length, given in terms of the mass of the atoms mat.

The � sign refers to positive and negative norm branches,
see e.g. Ref. [2] for details. The flow profiles giving rise to
a black hole (BH) and a white hole (WH) sonic horizon are
represented in Fig. 1. The dispersion relation of Eq. (1)
evaluated in the asymptotic supersonic region is plotted in
Fig. 2. The zero-frequency roots are �p�

U, where p
�
U is

p�
U ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
L � c2L

q
: (2)

In this equation, vL and cL are the asymptotic values of the
velocity and speed of sound in the supersonic region L, and
� ¼ 1=cL�L ¼ 2mat=ℏ characterizes the short distance
dispersion. This root only exists in a supersonic flow, and
its associated group velocity vgr ¼ 1=@!p is directed

against the flow. Hence, in a BH flow, it is oriented toward
the horizon, whereas for a WH one, it is oriented away
from it. This explains why the zero-frequency mode only
appears in WH flows where it is generated at the sonic
horizon. At this point, it should be mentioned that these
solutions are not restricted to superluminal dispersion. A
completely similar phenomenon exists in fluids character-
ized by a subluminal dispersion relation, such as that
obtained by replacing �2 ! ��2 in Eq. (1). This time,
however, the zero-frequency root, and the corresponding
undulation, live in the subsonic R region of the WH flow.
This can be understood because of the (approximate) sym-
metry of the mode equation found in Ref. [3], which
replaces a superluminal dispersion by a subluminal one.
When considering elongated quasi-one-dimensional

systems, but relaxing the assumption that the phonon ex-
citations are purely longitudinal, the phonon modes are
now characterized by their transverse wave number p?,
which takes discrete values 2�n=L?, where n is an integer
and L? is the characteristic size of the perpendicular
dimensions. When p2

? � 0, the modified dispersion rela-

tion replacing Eq. (1) is
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� ¼ !� vp ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðp2 þ p2

?Þð1þ �2ðp2 þ p2
?ÞÞ

q
:

(3)

It is represented in Fig. 3. When p2
?�

2 � 1, c2p2
? acts as a

mass squared. In this regime, there are two new zero-
frequency roots �pm

U. They live in the hydrodynamical
regime, characterized by a relativistic linear dispersion
relation. Indeed, in the limit �2p2

? ! 0, and if v2
L=c

2
L is

not too close to 1, pm
U is independent of � and given by

pm
U ¼ cLp?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
L � c2L

q : (4)

In addition, we note that the group velocity of this new
solution has a sign opposite to that of Eq. (2). Hence, this
new solution will be emitted in BH flows but not in WH
ones.
In brief, we see that the introduction of a perpendicular

momentum opens the possibility of finding ‘‘massive’’
undulations in BH flows, which are well described in the
hydrodynamical approximation of the underlying con-
densed matter system. To verify if this is the case, one
should see how the mass affects the spectrum, and in
particular if it acts as an infrared regulator which saturates
the growth of the undulation amplitude found in the mass-
less case [2,3]. In this paper, these issues will be inves-
tigated in a simplified context where the phonon modes
obey a second-order differential equation which is a mas-
sive Klein-Gordon equation in a curved metric. This anal-
ogy should work not only for BEC but for other condensed
matters systems where the quasiparticle dispersion relation
is linear at low frequency. We notice that similar issues
related to the Cerenkov effect have been recently discussed
in Ref. [9].
This paper is organized as follows. In Sec. II, we study

the solutions of the Klein-Gordon equation in a stationary
BH metric. We explain how the in=out scattering matrix
can be decomposed into three blocks which each encode
some aspect of mode mixing of massive fields. In Sec. III,
we study three preparatory cases which are then combined
so as to obtain the S-matrix in a black hole flow similar to
that represented in Fig. 1. In Sec. IV, we study the proper-
ties of the two-point correlation function in the low-
frequency sector, and its relationship with the undulations.

FIG. 2. The solid line represents the positive branch of the
comoving frequency �, while the dashed line represents the
negative branch. One clearly sees that the superluminal
Bogoliubov dispersion is responsible for the two zero-frequency
roots �p�

U. The sign of the group velocity can be seen from the

slope of the solid line at the corresponding root.

FIG. 3. As in Fig. 2, the solid line represents the positive
branch of the comoving frequency �, while the dashed line
represents the negative branch. One sees that p2

?, which acts as a
mass, is responsible for new zero-frequency roots �pm

U which

occur in the phonon part of the dispersion relation.

FIG. 1. Shown in this figure are examples of one-dimensional
black hole flow (solid line) and white hole flow (dashed line)
with regular asymptotic properties. They are related to each
other by reversing the sign of the velocity vðxÞ ! �vðxÞ. In
both cases, the subsonic R region jvj< c ¼ 1 is on the right of
the horizon, while the supersonic L region is on the left. The near
horizon region (NHR), where v��1þ �x is a good approxi-
mation, has a width in units of � of DL on the left and of DR on
the right.
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II. SETTINGS, MODE MIXING, AND
STRUCTURE OF THE S-MATRIX

In this paper, we study the behavior of a massive scalar
field in the 1þ 1-dimensional metric

ds2 ¼ c2dt2 � ðdx� vðxÞdtÞ2: (5)

For simplicity, we impose the condition that the speed
of sound is constant, and work in units where c2 ¼ 1.
The stationary metric of Eq. (5) possesses a Killing field
Kt ¼ @t, whose norm is 1� v2. It is timelike in subsonic
flows, spacelike in supersonic ones, and it vanishes when
1� v2 crosses 0. At that place, there is a horizon. In what
follows, we work with v < 0 and with monotonic flows
1� v2 which possess a horizon at x ¼ 0, where v ¼ �1.
The definition of the surface gravity of the horizon we shall
use is

� ¼ 1

2
@xð1� v2Þj0: (6)

We adopt this local definition, which no longer refers to the
norm of Kt at infinity, because it allows us to compare
various geometries starting from the near horizon region
(NHR). For a black hole, we have � > 0, while for a white
hole, � < 0. Unless specified otherwise, we shall only
consider black holes. Notice also that we shall work with
flow velocities which are either asymptotically bounded or
unbounded; in the latter case, there will be a singularity.

The field will be studied at fixed Killing frequency ! ¼
�ðKtÞ�P�, using a decomposition into stationary modes

� ¼
Z

�!ðxÞe�i!td!: (7)

At fixed !, the Klein-Gordon equation gives

½ð!þ i@xvÞð!þ iv@xÞ þ @2x �m2��!ðxÞ ¼ 0: (8)

Similar equations are obtained when studying acoustic
perturbations on a fluid flow with a velocity profile vðxÞ
[10,11]. In these cases, a nonzero transverse momentum
p? plays the role of the massm. In Appendix A, we present
the various (effectively) massive wave equations and their
differences. In what follows, we consider only Eq. (8), for
profiles vðxÞ which give rise to analytically soluble equa-
tions. Yet, we aim to extract generic features. When study-
ing analytically and numerically the phonon mode
equation in a Bose condensate and with a varying sound
speed [12], we recovered the features found for solutions to
Eq. (8).

A. Classical trajectories

To understand the consequences of the mass on black
hole radiation, it is useful to first consider the correspond-
ing classical problem where p ¼ ð@xÞ�P� is the momen-

tum of the massive particle at fixed !. In that case, the
Hamilton-Jacobi equation associated with Eq. (8) is

�2 ¼ ð!� vðxÞpÞ2 ¼ p2 þm2; (9)

where � ¼ !� vp is the comoving frequency. Equation
(9) admits two roots

p� ¼ �!v�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 �m2ð1� v2Þ

p

1� v2
: (10)

The classical trajectories obey Hamilton’s equations
dx=dt ¼ 1=@!p and dp=dt ¼ �1=@!x. We summarize
here their main features with !> 0, see Refs. [13–15]
for more details.
(i) Close to the horizon, at first order in 1� v2 �

2�x � 1, one has

pþ ¼ !

�x
; (11)

p� ¼ m2 �!2

2!
: (12)

We see that pþ diverges for x ! 0 whereas p�
hardly varies. The corresponding geodesics follow

xþðtÞ ¼ x0þe�t; (13)

x�ðtÞ ¼ x0� � 2!2

!2 þm2
t: (14)

The second trajectory is regularly falling across the
horizon, while the first undergoes an infinite focus-
ing in the past, in a mass-independent manner.

(ii) Far away from the horizon, in the left region (L) for
1� v2 < 0, both solutions are moving to the left
(since v < 0) even though pþ < 0 and p� > 0.

(iii) For 1� v2 > 0, in the right region (R), as long as
ð1� v2Þm2 <!2, there are two real roots. At some
point xtp, we reach ð1� v2Þm2 ¼ !2 where they

become complex. This means that the trajectory is
reflected and falls back across the horizon. Hence,
the asymptotic value of 1� v2 > 0 determines the
threshold frequency

!R ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

as

q
; (15)

above which the trajectory is not reflected. When
!<!R, there is a single trajectory with p! > 0
which starts from the horizon to the right and
bounces back across the horizon; see Fig. 4. For
!>!R instead, there are 2 disconnected trajecto-
ries; one is moving outwards from the horizon,
while the other falls in from x ¼ 1. As we shall
see, the dimensionality of asymptotic modes will
be different above and below !R.

B. Mode mixing

We decompose the field operator in a basis of stationary
modes
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�̂ðt;xÞ¼
X
j

Z þ1

0
½âj!�j

!ðxÞþ âjy! ð�j�!ðxÞÞ��e�i!td!

þH:c:; (16)

where the discrete index j takes into account the dimen-
sionality of mode basis at fixed!. The basis is orthonormal
in the sense of the Klein-Gordon scalar product

ð�j
!j�j0

!0 Þ ¼
Z
R
½�j�

! ð!0 þ iv@xÞ�j0

!0

þ�j0

!0 ð!� iv@xÞ�j�
! �dx

¼ ��ð!�!0Þ�jj0 : (17)

Following the standard conventions [16], we name the
negative norm modes ð��!Þ� so that ei!t��! is a positive
norm mode with negative frequency.

To obtain the dimensionality of the mode basis, one must
identify the solutions of Eq. (8) which are asymptotically
bounded modes (ABM). This requirement univocally picks

out a complete basis over which the canonical field �̂must
be decomposed [17]. Asymptotically, solving the mode
equation (8) is equivalent to solving the Hamilton-Jacobi
equation (9). Hence, the dimensionality of the ABM can be
found by considering the real roots of Eq. (9). Moreover,
the sign of the norm of an asymptotic mode is given by the
sign of the corresponding comoving frequency �ðpiÞ ¼
!� vpi, as can be seen from Eq. (17).

In addition, because the situation is nonhomogeneous,
modes mix and the basis is not unique. As usual, we
introduce in modes �in

! and out modes �out
! by examining

the mode behavior at early and late times; see the discus-
sion after Eq. (27) for more precision. The S-matrix then
relates the in and out bases. When there is a horizon, these
two bases are inequivalent because positive and negative
norm modes coexist and mix. To further study the mixing,
one should consider separately the frequencies below and
above !R in Eq. (15).
For 0<!<!R, there are two ABM. One has a nega-

tive norm and propagates behind the horizon. The other has
a positive norm, comes out from the horizon, and bounces
back across the horizon; see Fig. 4. The S-matrix thus has
the form

�in
!

ð�in�!Þ�
� �

¼ ST � �out
!

ð�out�!Þ�
� �

: (18)

To follow the standard definition of the S-matrix, we use its
transpose here.
For !>!R, there are three ABM. The negative norm

one still propagates behind the horizon. The second one
has a positive norm, comes out from the horizon, and
reaches infinity. The third one comes from infinity and
falls into the hole. As in Ref. [17], we denote the first
two with the superscript u and the last one with v, because
at high momentum, when the mass is negligible, they
follow retarded (u) and advanced (v) null geodesics. We
then define S by

�in;u
!

ð�in;u�!Þ�
�in;v

!

0
BB@

1
CCA ¼ ST �

�out;u
!

ð�out;u�! Þ�
�out;v

!

0
BB@

1
CCA: (19)

In this regime, when starting from vacuum, the three out
occupation numbers nu!, n

v
! and nu�! obey nu! þ nv! ¼

nu�! because of the stationarity of the settings. The first
two are given by the square of the overlaps

nu! ¼ jð�out;u
! j�in;u��! Þj2; nv! ¼ jð�out;v

! j�in;u��! Þj2: (20)

As we shall see, in both cases, it is useful to decompose the
total S-matrix as

S ¼ Sfar � Sext � SNHR; (21)

where each S-matrix describes one step of the in/out scat-
tering. The first one, SNHR, describes the mode mixing
which arises for high momenta p � m, near the horizon
where the modes are effectively massless. The second
matrix Sext encodes the elastic scattering which occurs in
the external region R. Below the threshold, it describes the
total reflection, while above it governs the grey body
factors encoding the partial transmission. The last matrix
Sfar describes the mixing occurring in the left region
between the two modes which are propagating toward
x ¼ �1.
It should be mentioned that this decomposition is not

unique, as only the in/out S-matrix is univocally defined.
However, in the absence of dispersion, each S-matrix is a

FIG. 4. In this figure, trajectories of massive particles for a
fixed frequency !> 0 below the threshold of Eq. (15) are
shown. The positive momentum trajectory is reflected in the
outside region at the turning point xtpð!Þ whereas the negative

momentum one (or equivalently, the positive momentum one
with negative ! [33]) propagates in the inside region where the
Killing field is spacelike. The negative momentum particle has a
negative comoving frequency � ¼ !� vp, and corresponds to
a negative norm mode, as we shall see later in the text.
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solution of a well-defined and independent scattering prob-
lem. In addition, this decomposition is very useful as it
allows us to compute S, and to understand its properties.

C. Near horizon scattering

We start with SNHR because its properties are valid for all
metrics possessing a horizon and because they are deter-
mined for momenta much higher than the mass and in the
immediate vicinity of the horizon. To simplify the mode
equation (8), we introduce the auxiliary mode ’!

�!ðxÞ ¼
e
�i!

R
x vðx0 Þ
1�v2ðx0 Þdx

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1� v2j

p ’!ðxÞ: (22)

Equation (8) is then cast in a canonical form, without the
term linear in @x,

"
�@2x þ

0
@@2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1� v2j

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1�v2j

p þ m2

1�v2
� !2

ð1� v2Þ2
!#

’!ðxÞ ¼ 0:

(23)

We notice that the norm of ’! is, up to a sign, given by the
Wronskian

Wð’Þ ¼ 2i�ð’�
!@x’! � ’!@x’

�
!Þ: (24)

Using Eq. (22), one verifies that unit Wronskian ’! modes
give rise to�! modes which have a unit norm with respect
to the scalar product of Eq. (17). The relative sign is given
by that of the comoving frequency � of Eq. (9).

In the close vicinity of the horizon, the mass term
becomes negligible in Eq. (23). More precisely, in the
near horizon region where 1� v2 � 2�x, keeping only
the leading term for �x � 1, one obtains

�
�@2x �

�
1

4
þ !2

4�2

�
1

x2

�
’!ðxÞ ¼ 0: (25)

Therefore, the leading behavior of ’! is

’! �
x!0

�ð�xÞAj2�xji!2�þ1
2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

focusing on the left

þ�ðxÞA0j2�xji!2�þ1
2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

focusing on the right

þ�ð�xÞBj2�xj�i!2�þ1
2 þ�ðxÞB0j2�xj�i!2�þ1

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
regularly falling in

: (26)

When reexpressing this in terms of the original mode �!

using Eq. (22), we see that the B weighted terms are
regular, and are in fact constant. Therefore, they account
for the regularity of the left-moving mode as it crosses the
horizon. Hence, we impose

B ¼ B0: (27)

On the other hand, the A parts in Eq. (26) oscillate infi-
nitely around x ¼ 0 and account for high momentum
modes living on either side of the horizon, and which
are singular on it. As understood by Unruh [18], it is

appropriate to combine them in superpositions which are
analytic either in the upper-half, or lower-half, complex x
plane. The reason is that their analytical properties guaran-
tee that these modes correctly characterize the stationary
vacuum statewhich is regular across the horizon, andwhich
plays the role of the in vacuum. This characterization ap-
plies to the�! modeswhich are solutions to Eq. (8). Hence,
the modes ’! of Eq. (22) are products of a nonanalytic
function and an analytic one, which is an Unruh mode:

’in
! � �

�
i
!

�

�
e
!�
2�ffiffiffiffiffiffiffiffiffiffiffiffi

8�2�
p jxj�i!2�þ1

2 	 ðxþ i�Þi!� ; (28)

ð’in�!Þ� � �

�
i
!

�

�
e
!�
2�ffiffiffiffiffiffiffiffiffiffiffiffi

8�2�
p jxj�i!2�þ1

2 	 ðx� i�Þi!� : (29)

We have used Eq. (24) to normalize these modes, and their
phases have been chosen in order to obtain simple expres-
sions. When there are turning points, as is the case for
dispersive fields [3] and for massive fields, one should pay
attention to these phases.
The normalized modes which propagate on either side of

the horizon and vanish on the other side are

’Right
! ��ðxÞ j2�xj

i!2�þ1
2ffiffiffiffiffiffiffiffiffiffiffi

4�!
p ; (30)

ð’Left�! Þ� ��ð�xÞ j2�xj
i!2�þ1

2ffiffiffiffiffiffiffiffiffiffiffi
4�!

p : (31)

The near horizon S-matrix SNHR is then defined by

�in
!

ð�in�!Þ�
 !

¼ �NHR
!

~	NHR
!

	NHR
! ~�NHR

!

 !
� �Right

!

ð�Left�! Þ�
 !

: (32)

Using the analytic properties of the in modes of Eqs. (28)
and (29), we immediately obtain

SNHR ¼
ffiffiffiffiffiffiffiffiffiffi
!

2��

r
�

�
i
!

�

�
e
!�
2� e�

!�
2�

e�
!�
2� e

!�
2�

 !
: (33)

Unlike the other matrices in Eq. (21), SNHR is universal in
that it only depends on � in Eq. (6). It is independent of the
other properties of the profile vðxÞ, and also of the massm.
In fact, when considering a two-dimensional massless
field, which obeys Eq. (8) with m ¼ 0, the left moving
v-modes decouple, nv! in Eq. (20) vanishes, and the total
S-matrix reduces to the above SNHR (when the asymptotic
flow velocity v is such that out modes are well defined). In
that case, on both sides of the horizon, the flux of u-quanta
is Planckian and at the standard Hawking temperature
�=2�, since nu! ¼ nu�! and

nu!
nu! þ 1

¼
��������
	NHR

!

�NHR
!

��������
2

¼ e�2�!=�: (34)
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D. Exterior and interior scatterings

As mentioned above, Sext and Sfar both depend on other
properties of the profile vðxÞ than �. However, their struc-
ture can be analyzed in general terms, and the meaning of
their coefficients can be identified. Before computing these
coefficients in specific flows, it is of value to present their
general features.

Below !R of Eq. (15), the positive norm mode is totally
reflected while the negative norm mode propagates inside
the horizon. The exterior scattering matrix Sext is thus fully
characterized by the phase accumulated by the positive
norm mode in the right region

�Right
!

ð�Left�! Þ�
 !

¼ ei�! 0

0 1

 !
� �Refl

!

ð�Left�!Þ�
 !

: (35)

Since this mode is totally reflected, it is the unique ABM
of Eq. (23) in R. For small x ! 0þ, using Eq. (30), its
behavior will be

’!ðxÞ�
0þ
C½j2�xji!2�þ1

2 þ ei�! 	 j2�xj�i!2�þ1
2�; (36)

which will allow us in the next sections to extract the phase
ei�! .

In the interior region, there is some extra mode mixing
which is described by Sfar. Because the norms of the two
modes are of opposite sign, this mixing introduces new
Bogoliubov coefficients:

�Left
!

ð�Left�!Þ�
 !

¼ �far
! 	far�

!

	far
! �far�

!

 !
� �out

!

ð�out�!Þ�
 !

: (37)

This scattering is entirely governed by Eq. (23) in the
interior region L. When working in an appropriate basis,
namely when positive and negative frequency modes are
complex conjugated, the real character of Eq. (23) guaran-
tees that the matrix Sfar is an element of SUð1; 1Þ.

We see that the regularity condition of Eq. (27) for the
mode crossing the horizon plus the ABM requirement
reduces the dimensionality of the four unknown coeffi-
cients of Eq. (26) to two. The S-matrix in Eq. (21) is then

S¼ �Tot
! 	Tot

!

~	Tot
! ~�Tot

!

 !

¼ �far
! 	far

!

	far�
! �far�

!

 !
� ei�! 0

0 1

 !
� �NHR

! 	NHR
!

~	NHR
! ~�NHR

!

 !
: (38)

This decomposition is depicted in Fig. 5. Notice that it is
the transposed version of the intermediate S-matrices of
Eqs. (32), (35), and (37) which appear in Eq. (38), as
explained after Eq. (18).

For frequencies larger than !R, the u mode and the v
mode, both of positive norm, mix in the exterior region R.
The matrix Sext now is 3	 3 and reads

�
Right
!

ð�Left�! Þ�
�in;v

!

0
BB@

1
CCA ¼

T! 0 ~R!

0 1 0

R! 0 ~T!

0
BB@

1
CCA �

�out;u
!

ð�Left�!Þ�
�NHR;v

!

0
BB@

1
CCA: (39)

The 2	 2 nontrivial sector of this matrix is an element of
Uð2Þ, and it describes an elastic scattering. The interior
scattering shares the same properties as occur for frequen-
cies below !R, namely the positive and negative norm
modes propagating in the region L mix. The outgoing u
mode is not affected by this scattering and is thus left
unchanged by Sfar. Therefore, the structure of the total
S-matrix is

S¼
1 0 0

0 �far�
! 	far�

!

0 	far
! �far

!

0
BB@

1
CCA �

T! 0 R!

0 1 0

~R! 0 ~T!

0
BB@

1
CCA �

�NHR
! 	NHR

! 0

~	NHR
! ~�NHR

! 0

0 0 1

0
BB@

1
CCA:

(40)

III. EXACTLY SOLVABLE MODELS

We shall first compute the above S-matrices in three
preparatory cases in order to understand various aspects
regarding the scattering of massive modes on a stationary
horizon. The results of these three cases will then be put
together so as to obtain the S-matrix in a background flow
relevant for analogue gravity models, and similar to that
presented in Fig. 1.
In what follows, the various geometries will be charac-

terized by a single function, given by the conformal factor
of Eq. (5)

CðxÞ ¼ 1� v2ðxÞ: (41)

The reason to refer only to this function is double. First, as
we see from Eq. (23), the mode equation for ’! only
depends on CðxÞ. Second, it will allow us to consider

FIG. 5. In this figure, a schematic representation of the
S-matrix decomposition in Eq. (38) is shown. The asymptotic
in and out amplitudes of the positive frequency mode �in

! are
indicated.

COUTANT et al. PHYSICAL REVIEW D 86, 064022 (2012)

064022-6



ranges of x where CðxÞ> 1. In such regions, the function
vðxÞ of Eq. (5) is complex. However, neither the geometry
nor the wave equation (23) is ill defined, as can be
seen by making the change of time coordinate tS¼
tþR

vdx=ð1�v2Þ, which gives

ds2 ¼ ð1� v2Þdt2S �
dx2

1� v2
: (42)

This line element depends only on CðxÞ and can be ex-
tended to C> 1. In fact, the v-dependent prefactor in
Eq. (22) accounts for the coordinate change t ! tS. The
status of the auxiliary mode ’! is thus clear: it is the
stationary mode when using the ‘‘Schwarzschild’’ time
coordinate tS, which is singular on the horizon. While the
auxiliary mode ’! obeys an equation which is simpler to
solve, it is singular across the horizon, see Eq. (30). Hence,
we shall use the original mode �! to impose regularity
conditions on the horizon, see Eq. (27).

A. Rindler horizon

It is instructive to first study a Rindler (future) horizon
in the above formalism. To do so, we use the profile
defined by

CðxÞ ¼ 2�x: (43)

It is straightforward to check that this metric has a vanish-
ing scalar curvature R ¼ �@2xC=2 and thus describes flat
space. In Eq. (43), � is the ‘‘surface gravity’’ as defined by
Eq. (6). The fact that it depends on the arbitrary normal-
ization of the Killing field Kt is free of physical conse-
quence, because the S-matrix depends only on the ratio
!=�, see, e.g., Eq. (33).

In this geometry, Eq. (23) reads

�
�@2x þ

m2

2�x
�
�
1

4
þ !2

4�2

�
1

x2

�
’!ðxÞ ¼ 0: (44)

The interesting aspect of Rindler space is that we know the
result in advance. Indeed, since there is no pair creation in
flat space, the total Bogoliubov transformation of Eq. (21)
must be trivial, i.e., 	Tot

! ¼ 0. However, from Eq. (44), we
see that close to the horizon, the modes behave as in
Eq. (26) and thus are subjected to the NHR mixing de-
scribed in Sec. II C. Therefore, the extra scattering de-
scribed by Sfar and Sext exactly compensates the NHR
one, so that the total S-matrix is trivial. To show that this
is the case, we solve Eq. (44) following the steps of
Secs. II C and IID.

Equation (44) should thus be solved separately for x > 0
and x < 0. On both sides, its solutions can be expressed in
terms of Bessel functions. We start by studying the exterior
R region. For x > 0, the only ABM is

’!ðxÞ ¼ C
2i

�
Ki!=�

0
@2

ffiffiffiffiffiffiffiffiffi
m2x

2�

s 1
A; (45)

where K
ðzÞ is the Mac-Donald function [19] and C a
constant. At large values of x,

’!ðxÞ � 2iC

�
�x

8�2m2

�1
4
e�2

ffiffiffiffiffi
m2x
2�

p
: (46)

This exponential decrease is expected since !R of
Eq. (15) is infinite. Near the horizon, for x ! 0þ, the
ABM behaves as

’!ðxÞ � �Cei
!
� lnðm2�Þ

�
ei�Rindler 	 j2�xj�i!2�þ1

2 þ j2�xji!2�þ1
2

�ð1þ i!=�Þ sinhð!�
� Þ

�
;

(47)

where

ei�Rindler ¼ �ði!=�Þ
�ð�i!=�Þ e

�2i!� lnðm2�Þ: (48)

This is the phase shift that enters in Eq. (35). It will play a
crucial role in what follows.
In the interior region L, the general solution reads

’!ðxÞ ¼ A
ffiffiffiffiffiffiffi�x

p
J�i!=�

0
@2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2x

2�

s 1
A

þ B
ffiffiffiffiffiffiffi�x

p
Ji!=�

0
@2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2x

2�

s 1
A: (49)

Near the horizon, for x ! 0�, one finds

’!ðxÞ � A!

e�i!� lnðm2�Þffiffiffiffiffiffi
2�

p
�ð1� i!=�Þ j2�xj

�i!2�þ1
2

þ B!

ei
!
� lnðm2�Þffiffiffiffiffiffi

2�
p

�ð1þ i!=�Þ j2�xj
i!2�þ1

2: (50)

In order to build the normalized positive frequency left
mode �Left

! appearing in Eq. (37), we choose

A! ¼ �i

ffiffiffiffiffiffiffiffiffiffi
!

2��

r
�ð�i!=�Þei!2� lnðm2�Þ; (51)

and B! ¼ 0, so as to get

’Left
! ðxÞ � j2�xj�i!2�þ1

2ffiffiffiffiffiffiffiffiffiffiffi
4�!

p : (52)

For x ! �1, the asymptotic behavior of this mode is
[19,20]

’Left
! �

ffiffiffiffiffiffiffiffiffiffi
!

2��

r
�ð�i!=�Þe!�

2� ei
!
� lnðm2�Þ�i�4

	
8<
:
e�i

ffiffiffiffiffiffiffiffiffi
�2m2x

�

p

ð8�2m2

��x Þ
1
4

þ e�
!�
� ei

�
2 	 ei

ffiffiffiffiffiffiffiffiffi
�2m2x

�

p

ð8�2m2

��x Þ
1
4

9=
;: (53)

In the parentheses, the first term is the asymptotic positive
norm out mode, whereas the last factor of the second term
gives the negative norm one. Therefore, the coefficients of
Eq. (37) are
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�far
! ¼

ffiffiffiffiffiffiffiffiffiffi
!

2��

r
�ð�i!=�Þe!�

2� ei
!
� lnðm2�Þ�i�4 ; (54)

	far�
! ¼ �far

! 	 e�
!�
� ei

�
2 : (55)

Making a similar computation for the negative left mode
ð�Left

! Þ�, we obtain �far�
! and 	far

! and verify that Sfar is an
element of SUð1; 1Þ. From Eq. (55), we see that

j	far
! =�far

! j2 ¼ e�2�!=�, which is exactly the ratio of the
near horizon coefficients of Eq. (33). This is a necessary
condition for having	Tot

! ¼ 0. However, it is not sufficient,
as one also needs the phases to match each other, since

	Tot
! ¼ ~�NHR

! 	far
! þ �far

! 	NHR
! ei�!: (56)

From this equation, one clearly sees the crucial role played
by ei�! of Eq. (48). An explicit calculation shows that the
total S-matrix of Eq. (38) is

S ¼ �ði!=�Þ
�ð�i!=�Þ e

�i!� lnðm2�Þ
e�i�4 0

0 ei
�
4

 !
: (57)

We see that the two in/out coefficients 	Tot
! vanish for all

values of ! and m. Hence, the scattering away from the
horizon exactly compensates the near horizon mixing, and
there is no pair creation. Of course, this exact cancellation
was expected in the present case. However, in more general
space-times, as we shall see below, a partial cancellation
between Sfar and SNHR will be obtained for similar reasons.

B. Totally reflecting model

Our second example generalizes the former Rindler case
in that there is still a total reflection, but the profile vðxÞ
now possesses an asymptotically flat interior region. As a
result, the asymptotic flux of left-going particles is well
defined, since the emitted quanta are asymptotically de-
scribed by plane waves. The profile which generalizes
Eq. (43) is

CðxÞ ¼ Dð�1þ e
2�x
D Þ: (58)

The parameter D characterizes the transition from the near
horizon region to the asymptotic one. In the limit D ! 1,
CðxÞ of Eq. (58) becomes that of Eq. (43), which describes
Rindler space. In the above metric, Eq. (23) is analytically
solvable in terms of hypergeometric functions [19,20]. The
full expression of the general solution is given in
Appendix B. To compute the total S-matrix, we follow
exactly the same procedure as in Sec. III A.

The first important quantity is the phase shift of Eq. (35).
To simplify its expression, we introduce the dimensionless
quantities

$ ¼: !

2�
; ��þ ¼:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2Dþ!2

p

2�
: (59)

The (exact) phase shift then reads

ei�Refl¼ �ð2i$Þ�ð1�i$þi ��þÞ�ð1�i$�i ��þÞ
�ð�2i$Þ�ð1þi$�i ��þÞ�ð1þi$þi ��þÞ

e2i$lnðDÞ:

(60)

In the interior L region, the scattering coefficients in Sfar
are

�far
! ¼

� ��2þ
$2

�1
4 �ð1� 2i$Þ�ð�2i ��þÞ
�ð�i ��þ � i$Þ�ð1� i$� i ��þÞ

ei$ lnðDÞ;

	far
! ¼ �far�! 	 e�2i$ lnðDÞ: (61)

The total beta coefficient is then given by

	Tot
! ¼ ~�NHR

! 	far
! þ �far

! 	NHR
! ei�Refl : (62)

Its full expression is rather complicated and not very
transparent. It is more interesting to study its behavior in
different regimes of the parameter space ð!=�;m=�;DÞ.

1. Low-frequency regime

An interesting phenomenon happens in the deep infrared
regime, ! ! 0. In this regime, we find

ei�Refl ��1; (63)

	far
! � �far

! �
ffiffiffiffiffiffiffiffiffiffi
mD

1
2

!

s
�ð�i mD

1
2

� Þ
�ð�i mD

1
2

2� Þ�ð1� i mD
1
2

2� Þ
; (64)

	NHR
! � �NHR

! ��i

ffiffiffiffiffiffiffiffiffiffiffi
�

2�!

r
: (65)

These equations show that, while both 	NHR
! and 	far

!

diverge as 1=!1=2, the total coefficient in Eq. (62)
does not diverge as 1=!, as one might have expected.
Using the analytic character of the � functions in
Eqs. (60) and (61), one finds that the leading term is
constant; that is,

	Tot
! �!!0 fð�=mD1=2Þ; (66)

which is finite for all m> 0. This completely differs
from the massless case where 	Tot

! diverges �	NHR
! �

1=
ffiffiffiffi
!

p
; see the discussion after Eq. (33). Moreover,

when we take the massless limit of Eq. (62) at fixed
!, we obtain the massless result,

	Tot
! �m!0 	

NHR
! ; (67)

for all !, and thus, in particular, we recover the di-
verging behavior for ! ! 0þ. Before addressing the
apparent contradiction between Eqs. (66) and (67), it
is of value to take a pause and to discuss the lesson
from Eq. (67). This equation shows that when a mass-
less conformally coupled field is scattered on a Killing
horizon of a stationary metric which is asymptotically
singular in the external region (since the curvature
R ¼ �@2xC=2 ! 1 for x ! 1; see Fig. 6), the particle
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flux is nevertheless well defined in the interior region
because it is asymptotically flat, so that the out modes
of negative Killing frequency are unambiguously de-
fined. In this case, using Eq. (34), one gets a Planck
spectrum emitted toward asymptotic left infinity. This is
rather unusual since the Killing frequency is negative,
and has in that L region the physical meaning of a
momentum since the Killing field is space-like.

The compatibility between Eq. (66) and Eq. (67) is
understood when realizing that the saturated value 	Tot

0

of Eq. (66) diverges when m ! 0. To see this more pre-
cisely, we focus on the regime of small mass m � � and
small frequencies ! � �, for arbitrary ratios !=m. In this
regime, we get

	Tot
! ��i

�
�2

4�2ð!2 þm2DÞ
�1
4
: (68)

This expression reveals that there is a change of regime
near

!L ¼ mD
1
2: (69)

When � � ! � !L, 	
Tot
! is growing as in the massless

case, whereas for ! � !L, it saturates at a high but finite
value, as can be seen in Fig. 7. As in the case of ultraviolet
dispersion [3,17], we observe that the effective frequency
which governs the spectrum depends, as expected, on the
dispersive frequency—here, the mass m and, there, the
ultraviolet scale �—but also depends in a nontrivial man-
ner on the parameter D which governs the extension of the
NHR. In the present case, the power of D is 1=2, whereas
for ultraviolet dispersion, the power is ðnþ 1Þ=n when
the dispersion relation which replaces Eq. (9) is �2 ¼
p2 þ pnþ2=�n.

2. Large mass regime

When the mass is large, i.e., m � �;!, we find that the
coefficients of SNHR and Sfar go to their Rindler values in a
well-controlled manner, e.g.,

ei�Refl �m!1 ei�Rindlerð1þOð�=mD
1
2ÞÞ: (70)

This implies that 	Tot
! ! 0 for m ! 1 as

	Tot
! ¼ Oð�=mD

1
2Þ ¼ Oð�=!LÞ: (71)

This can be understood by considering the Bessel functions
of Sec. III A. Their behavior reveals that the scattering

FIG. 6. Shown in this figure are the Penrose-Carter diagrams of the geometries we shall use. On the left, the totally reflecting model
of Eq. (58) which is singular in the exterior region; in the middle, the CGHS model of Eq. (72) with its interior singularity; and on the
right, the analog model of Eq. (82) which is everywhere regular and can be obtained by pasting the L quadrant of the first model with
the R quadrant of the second. These diagrams do not represent the full analytic extension of each space-time, but only the quadrants
which are relevant for our S-matrix, namely, the L and R regions on either side of the (future) horizon H . Precise definitions of the
various types of infinities along with more details about the last diagram are given in Ref. [34].

FIG. 7. In this figure, j	Tot
! j2 is plotted as a function of! in the

regime of low mass and frequencies, i.e., !;m � �. For fre-
quencies above the threshold of Eq. (69), j	Tot

! j2 behaves as for a
massless field and grows as �=!. For frequencies !<!L,
j	Tot

! j2 saturates at ��=!L � �=mD1=2. In the opposite regime,
where the mass is larger than �=2�, the suppression arises at a
frequency larger than the temperature, and j	Tot

! j2 remains
smaller than 1.
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away from the horizon in region L, which compensates the
NHR mixing, occurs on a distance from the horizon
��=m2. Hence, for large masses, the entire scattering
occurs in a close vicinity of the horizon. Therefore, in
the large mass limit, the scattering in the present geometry
is indistinguishable from that occurring in Rindler space.
Using WKB techniques [3], which furnish reliable approx-
imations in the large mass limit, one can demonstrate that
the residual scattering outside the NHR is negligible. This
means that for m � �, !, irrespectively of the properties
of the (smooth) profile vðxÞ, the net in/out Bogoliubov
coefficient 	Tot

! is suppressed by the mass. This behavior
radically differs from that of the massless case given in
Eq. (67), even though both cases share the same SNHR.

C. CGHS model

We now study another exactly soluble example, which is
given by the Callan-Giddings-Harvey-Strominger (CGHS)
black hole [21], except for the definition of the surface
gravity � which is here given by Eq. (6). In Painlevé-
Gullstrand coordinates, the conformal factor reads

CðxÞ ¼ Dð1� e�
2�x
D Þ: (72)

Even though this geometry is very different from that of
Eq. (58), as it is singular in the interior region (see Fig. 6),
at the level of the mode equation it gives something very
close since the discrete interchange C ! �C and x ! �x
maps one problem into the other. For this reason, the
solutions of Eq. (23) will also be hypergeometric functions,
see Appendix B. As in Sec. III B, � is the surface gravity,
and D characterizes the transition from the NHR to the
asymptotic region. However, here, D also controls the
value of the threshold frequency !R in Eq. (15) since

!R ¼ mD
1
2: (73)

When !<!R, the positive norm mode is totally re-
flected, and the accumulated phase shift characterizes Sext.
As in the preceding section, to obtain simpler expressions,
we introduce

��< ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

R �!2
q

2�
; (74)

��> ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 �!2

R

q

2�
; (75)

which are modified versions of Eq. (59). The exterior phase
shift is then

ei�CGHS ¼ �ð2i$Þ�ð1� i$þ ��<Þ�ð�i$þ ��<Þ
�ð�2i$Þ�ð1þ i$þ ��<Þ�ði$þ ��<Þ

e2i$ lnðDÞ:

(76)

From this, conclusions similar to that of Sec. III B can be
drawn. For instance, when ! ! 0, we recover

ei�CGHS �!!0 �1; (77)

which is the main ingredient needed to obtain a canceling
effect as in Eq. (66) and to have 	Tot

!!0 be regular in the

limit ! ! 0. If the mass is large, then the behavior is
essentially that found for Rindler space-time in Eq. (70),
as can be seen by an explicit calculation.
When !>!R, we are in the configuration where there

exists three ABM, as in Eq. (40). The grey body factors in
the external region R are analytically obtained from the
hypergeometric functions. The transmission and reflection
coefficients are

T! ¼ ~T!

¼
�
$2

��2
>

�1
4 �ð�i ��> � i$Þ�ð1� i$� i ��>Þ

�ð1� 2i$Þ�ð�2i ��>Þ
e�i$ lnðDÞ:

(78)

~R!¼��ð1þ2i$Þ�ð�i ��>� i$Þ�ð1� i$� i ��>Þ
�ð1�2i$Þ�ð�i ��>þ i$Þ�ð1þ i$� i ��>Þ

	e�2i$ lnðDÞ; (79)

R! ¼ �ð2i ��>Þ�ð�i ��> � i$Þ�ð1� i$� i ��>Þ
�ð�2i ��>Þ�ði ��> � i$Þ�ð1� i$þ i ��>Þ

: (80)

Using Eq. (40), the asymptotic outgoing flux of Eq. (20) is

nu! ¼ h0; injðaout;u! Þyaout;u! j0; ini ¼ j	NHR
! T!j2 (81)

At ! ¼ !R, T! vanishes, and below !R, it is trivially 0.
In the next section, the transition shall be analyzed in more
detail.

D. Analog model

We now consider a profile which combines the regular
interior region of Sec. III B with the regular exterior region
of the above CGHS model so as to get a flow similar to that
of Fig. 1. The resulting geometry is relevant for analog
models where the velocity profile is everywhere bounded.
We thus consider

CðxÞ¼1�v2ðxÞ¼
8<
:
DLð�1þe

2�x
DL Þ for ðx<0Þ;

DRð1�e
�2�x

DR Þ for ðx>0Þ:
(82)

This profile is C1, i.e., it is continuous, and its first deriva-
tive is continuous [22]. This ensures that the global ge-
ometry obtained is regular, in the sense that the curvature
does not contain a distributional contribution. Since the
scattering matrices Sext and Sfar have been already studied
both in the exterior and interior regions, all we need to do
here is to combine them to get the total S-matrix

S ¼ Sfar|{z}
Sec: III B

: Sext|{z}
Sec: III B

: SNHR|ffl{zffl}
Sec: II C

: (83)

COUTANT et al. PHYSICAL REVIEW D 86, 064022 (2012)

064022-10



The two threshold frequencies of Eqs. (73) and (69) are
now

!R ¼ mD
1
2

R; !L ¼ mD
1
2

L: (84)

Having different values for DR and DL will allow us to
distinguish their roles.

We first consider the totally reflecting regime, !<!R.
Interestingly, we recover the transition seen in Sec. III B
and in Fig. 7. Indeed, for ! � !R,

ei�CGHS ��1: (85)

Together with the coefficients of Sfar, this ensures that 	
Tot
!

has a finite value in the limit! ! 0. More precisely, in the
high � regime, for m, ! � �, we have

j	Tot
! j2 � �ðDL þDRÞ

2�DR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ!2

L

q : (86)

To observe a divergent regime j	Tot
! j2 / �=!, one needs to

assume that !L � !<!R, where the last inequality is
required in order to be below the threshold !R. This
implies DL � DR; hence,

j	Tot
! j2 � �

2�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ!2

L

q : (87)

This expression shows the transition between the diverging
regime at the standard temperature, which is independent
of DR and DL, and a saturating regime governed by !L.
For large masses m � �;!, the results are the same as in
Secs. III B and III C, namely the various scattering coef-
ficients asymptote to their Rindler values. In rather differ-
ent settings where the sound speed c varies with x and the
velocity v is a constant, a combination of analytical results
and numerical simulations [12] shows that all of these
results are recovered. This demonstrates that the low-
frequency behavior of Eq. (85) applies to a much wider
class of situations than the one considered here.

We now have all the ingredients necessary to study the
effects of a massive field on the outgoing fluxes when
starting from vacuum. On the right side, the outgoing
particle flux is that of Sec. III C: as expected, it vanishes
below !R, and above it is given by

nu! ¼ j	NHR
! T!j2: (88)

To observe the transition, we work in the high � regime,
i.e., !;m � �, and obtain

nu! ’ �

2�
�ð!�!RÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 �!2

R

q
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2 �!2
R

q
þ!

�
2
: (89)

The flux is thus continuous when crossing !R.
On the left side, the particle fluxes are more complicated

since two contributions are present, see Eq. (20); nv! is

composed of positive frequency particles, and nu�! ¼
nu! þ nv! is composed of the negative frequency partners.
We first notice that both of these are well defined since the
profile of Eq. (82) is asymptotically flat in L. Using
Eq. (40), in full generality, nv! reads

nv!¼�ð!�!RÞj ~R!�
far
! 	NHR

! þ ~�NHR
! 	far

! j2
þ�ð!R�!Þjei�CGHS�far

! 	NHR
! þ ~�NHR

! 	far
! j2: (90)

The first term in the first line, which is proportional to ~R!,
describes the stimulated production in the L region due to
the reflected Hawking quanta. The other terms describe the
interference between the mixing in the NHR region and the
scattering in the L region away from the horizon. Just as for
ei�CGHS below the threshold, the phase of ~R! is crucial since
there is interference between these two terms. Particularly
interesting is behavior of nv! near the threshold frequency
!R. In the regime of large surface gravity, � � !;m, for
!>!R >!L, one finds

nv! ’ �

2�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ!2

L

q
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ!2

L

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 �!2

R

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 �!2

R

q
þ!

1
CA

2

; (91)

whereas for !<!R

nv! ’ �

2�

ð1þDL=DRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ!2

L

q : (92)

These two equations describe the effects on the spectrum in
the L region which are due to a small mass. We first notice
that nv! is continuous across!R, but with a cusp; see Fig. 8.

FIG. 8. Particle flux of positive frequency quanta spontane-
ously emitted from the horizon toward x ! �1 in the high �
regime. Above!R, one finds a small contribution which is due to
the reflection (the backscattering) of Hawking quanta emitted
towards x ¼ 1. Below the threshold, the entire thermal flux is
reflected and grows like �=! for decreasing values of !, until
one reaches !L where it saturates, as explained in Sec. III B.
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From Eq. (89), we see that this is also true for nu! and hence
for nu�! as well.

We also see that the spectrum depends on the mass m
only through the two critical frequencies of Eq. (84). It is
thus through them that the profile properties, namely DR

andDL which govern the extension of the NHR on the right
and on the left, see Fig. 1, affect the spectrum. The lesson
here is that when dealing with a conformally invariant
massless field, the surface gravity is the only background
quantity which affects the spectrum. When breaking con-
formal invariance, by a mass, or a nonconformal coupling
as in 3þ 1 dimensions, or by adding some ultraviolet
dispersion, other properties of the background flow affect
the spectrum. From the above analysis, and that of
Refs. [3,17,23,24], the most important ones are the exten-
sions of the near horizon region, on both sides.

IV. MASSIVE MODES AND UNDULATIONS

In Ref. [2], it was noticed that, in a Bose condensate, the
density-density correlation function computed in a station-
ary white hole flow displays an infrared divergence with a
specific short distance pattern. As explained in the intro-
duction, this divergence originates from the combination of
three properties: first, the divergence of the Bogoliubov

coefficient 	! � 1=!1=2 for ! ! 0; second, the existence
of the zero-frequency root p�

!¼0 � 0 of Eq. (2); and third,

the group velocity oriented away from the sonic horizon.
As a result, the zero-frequency phonons emitted by the
white hole give a large contribution to the two-point func-
tion which has a short wavelength pattern. Moreover, this
contribution factorizes [3] in the product of twice the same
real wave, as in a presence of a coherent state of phonon
modes [25].

In brief, the analysis of the analog Hawking radiation in
dispersive media (with either superluminal or subluminal
dispersion [3]) predicts that white hole flows should emit a
zero-frequency wave which has a large amplitude and
which behaves classically. Interestingly, this type of wave
called undulation is well known in hydrodynamics [4,6].
Moreover, undulations have been observed in recent ex-
periments aiming to detect the analogue Hawking radiation
in water tanks [7,8]. However, their intimate relationship to
Hawking radiation has not been previously pointed out.
Given the fact that the low-frequency Bogoliubov coeffi-
cient 	! contributes to the undulation amplitude, we think
that studying and observing these waves should be con-
ceived as part of the enterprise to observe the analogue
Hawking radiation. As a last remark, we wish to stress that
the linearized treatment predicts that, when starting from a
vacuum or a thermal state, the undulation amplitude is
described by a Gaussian stochastic ensemble with a van-
ishing mean amplitude, exactly as primordial density fluc-
tuations in the inflationary scenario [26]. Indeed, the mode
mixing at the horizon amplifies vacuum or thermal fluctu-
ations, and thus generates a random noise. But when the

initial state is classical, because it contains a large wave
packet described by a coherent state, the outcome of the
amplification is also deterministic.
Adding a mass, or a perpendicular momentum, to a two-

dimensional massless relativistic dispersion relation also
engenders a nontrivial zero-frequency root of Eq. (9) in the
supersonic L region, thereby opening the possibility of
having a ‘‘massive undulation.’’ This possibility has been
the main motivation of this paper. In the following, we first
present the necessary and sufficient conditions to find an
undulation, starting from the two-point function, as it
clearly reveals a subtle aspect, namely the cumulative
role of low frequencies in determining the amplitude of
the zero-frequency wave. Then, we study the role of a
nonzero mass, both in black and white hole flows.

A. General properties

We consider the two-point correlation function eval-
uated in the in-vacuum

Gðt; t0; x; x0Þ ¼ h0; inj�̂ðt; xÞ�̂ðt0; x0Þj0; ini: (93)

Using Eq. (16), we find for equal times that

Gðt; t; x; x0Þ ¼
Z 1

0
G!ðx; x0Þd!: (94)

In the infrared sector, for frequencies below!R in Eq. (15),
using Eq. (18), the relevant term in the integrand is

G!ðx; x0Þ ¼ �in
!ðxÞð�in

!ðx0ÞÞ� þ�in�!ðxÞð�in�!ðx0ÞÞ�: (95)

In general, �in
! and �in�! are two different functions of x,

and G! is complex and cannot be factorized. To see that
under some conditions it factorizes, we use Eq. (38) to
work with the out modes. Then, the first term in Eq. (95)
becomes

�in
!ðxÞð�in

!ðx0ÞÞ� ¼ j�Tot
! j2�out

! ðxÞð�out
! ðx0ÞÞ�

þ j ~	Tot
! j2ð�out�!ðxÞÞ��out�!ðx0Þ

þ 2Ref�Tot
!

~	Tot�
! �out

! ðxÞ�out�!ðx0Þg:
(96)

In the limit ! ! 0, two effects are combined. First, �out
!

and �out�! become the same function of x, �out
0 ðxÞ. This is

true in general, but not in the particular case of the two-
dimensional massless field in a black hole metric because
in that case, �out

! and �out�! vanish on the L and R quadrant
respectively (see Ref. [3]).
Second, when assuming that j	Tot

! j2 � 1 for ! ! 0,
since S of Eq. (38) is an element of Uð1; 1Þ, one has

j�Tot
! j2 � j~�Tot

! j2 � j	Tot
! j2 � j ~	Tot

! j2;
�Tot
!

~	Tot�
! � ~�Tot�

! 	Tot
! � e2i�j	Tot

! j2;
(97)

where e2i� is a phase. These two facts guarantee that G!

becomes real and factorizes as
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G!ðx; x0Þ � 8j	Tot
! j2 	�UðxÞ�Uðx0Þ; (98)

where the real wave

�UðxÞ ¼: Refei��out
0 ðxÞg (99)

gives the profile of the undulation. It should first be noticed
that its phase is locked. Indeed, if one modifies the arbi-
trary phase of the out mode �out

0 , the modified phase �
would exactly compensate this change so that �U would
remain unchanged. This can be understood from the fact
that�U oscillates on one side of the horizon and decays on
the other. In fact, it behaves like an Airy function, even
though the phase ei� is different; see Ref. [3] for details.
One should point out that this factorization means that the
undulation contributes to observables in the same way that
a coherent state does, see Appendix C in Ref. [25]. It
thus behaves as a classical wave in that its profile and its
phase are not random. However, in the present linearized
treatment, its amplitude is still a random variable, i.e., its
mean value is identically zero, and j	Tot

! j2 gives the
(!-contribution of its) standard deviation. This should be
conceived as an important prediction of the linearized
treatment and could be validated for a BEC using numeri-
cal techniques similar to those of Ref. [2], and perhaps also
in future experiments.

So far, we have worked at fixed !. We now consider the
integral over low frequencies in Eq. (94). We recall that the
divergence of j	Tot

! j2 for ! ! 0 accounts for a growth in
time of the root-mean-square (rms) amplitude of the un-
dulation [2,3]. When considering an observable evaluated
at a finite time t after the formation of the horizon, the
stationary settings of Eq. (94) with a dense set of frequen-
cies should be used with care. Indeed, after such a lapse,
one cannot resolve frequencies separated by less than
2�=t, as in the Golden Rule. This effectively introduces
an infrared cutoff in the integral over !. Taking this into
account gives the growing rate which depends on the power
of the divergence of j	Tot

! j2. For example, when the
Bogoliubov coefficients take their massless values in
Eq. (33), in the vacuum, the infrared contribution of G
grows as

GIRðt; x; x0Þ � 8
Z
2�=t

d!

!

�

2�
	�UðxÞ�Uðx0Þ;

� 4�

�
lnðt=2�Þ 	�UðxÞ�Uðx0Þ: (100)

Of course, in a medium, this growth would saturate be-
cause of the nonlinearities, as was observed in a Bose
condensate [2]. In the experiments of Refs. [7,8], only a
constant (saturated) amplitude was observed. It would be
very interesting to conceive experiments to observe the
growth of the undulation amplitude. It would be also
important to understand if the randomness of the amplitude
found in the linearized treatment (in vacuum and in thermal
states) is replaced by a deterministic nonlinear behavior

when nonlinearities are included, or if some residual ran-
domness persists. In conclusion, the linearized treatment of
perturbations predicts that all (sufficiently regular [23])
white hole flows in dispersive media should emit an un-
dulation with a significant amplitude.

B. Massive hydrodynamical undulations in black holes

We now study the undulation in the analog black hole
metric of Eq. (82). In preceding sections, we saw that the
low-frequency massive modes end up in the inside L region
for both signs of !; see Fig. 4. Moreover, in the limit
! ! 0, their momentum [solution of Eq. (9); see also
Fig. 3] is finite and given by

pm
U ¼ p!!0 ¼ mD

�1
2

L

�
1þO

�
!

!U

��
: (101)

This means that the zero-frequency mode �out
0 ðxÞ is a

nontrivial function of x, opening the possibility of finding
a behavior similar to that of Eq. (100). When !L � �, an
explicit calculation of Refei��out

0 ðxÞg, similar to that made

in Ref. [3], tells us that the asymptotic profile of �m
U is

�m
UðxÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4�!L

p cosðpm
UxÞ: (102)

The next important aspect concerns the calculation of
the net contribution of low-frequency modes to G. In this
respect, two aspects should be discussed. The first one
concerns the fact that j	Tot

! j2 no longer diverges for
! ! 0. However, the criterion for the factorization of G
is only that j	Tot

! j2 � 1. When !L � �, as shown in
Eq. (87), this is the case for frequencies ! � �=2�. The
second aspect concerns the frequency interval 0 
 !<
!U such that the momenta p! are close enough to undu-
lation momentum pU so that the outmodes�out

! contribute
coherently to �out

0 . Using Eq. (9) in the asymptotic interior

region, we get

!U ’ !Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDL

p � �: (103)

Therefore, at time t after the formation of the horizon, the
contribution of the low-frequency modes to the two-point
function is

GIRðt; x; x0Þ ¼ 8
Z !U

2�=t
j	Tot

! j2d!	�m
UðxÞ�m

Uðx0Þ: (104)

When assuming !U � �, which is the case for a small-
enough mass, using Eq. (87), we get

Z !U

2�=t
j	Tot

! j2d! ¼ �

2�

�
sinh�1

�
!U

!L

�
� sinh�1

�
2�

!Lt

��
:

(105)

Hence, for short times, the amplitude grows as lnðtÞ, as in
the massless case. However, when t > 2�=!L, the ampli-
tude saturates and stays constant afterwards. This is an
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important prediction of this paper. It shows how the tran-
sition in ! near !L with respect to the massless spectrum
(see Fig. 7) produces here a change in time of the growth
rate.

To conclude this section, we wish to provide a qualita-
tive evaluation of the importance of this infrared contribu-
tion to G. To do so, we need to consider some observables,
such as the stress-energy tensor. In particular, its trace
accounts for the mass density of the field,

Tr ðT̂Þ ¼ hT̂�
�i ¼ m2h�2ðxÞi: (106)

At late times, i.e., t � 2�=!L, the contribution of the
undulation to the trace is

TrðT̂IRÞ ¼
�m

�2D
1
2

L

sinh�1

�
!U

!L

�

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
&1

	 cos2ðpm
UxÞ: (107)

Since wework with � � !L ¼ mD1=2
L , this contribution to

the trace is much smaller than �2, the typical energy
density contained in the Hawking flux for a light field.
Hence, we expect that the undulation will not be easily
visible in this case. Moreover, whenDL ! 1, which is the
Rindler limit, the amplitude goes to 0 as 1=DL, confirming
the stability of Minkowski space. It is also interesting
to notice that the parameter DR plays no role [as long as
! � !R, so that Eq. (87) stands], confirming that the
undulation is controlled by the interior geometry.

C. Massive dispersive undulations in white holes

For white holes, undulations can be found when the
dispersion relation is nonrelativistic in the ultraviolet sec-
tor, as discussed in the introduction. For simplicity, we
consider here the superluminal relation �2 ¼ m2 þ p2 þ
p4=�2 which is obtained from Eq. (3) in the limit �p?!0.
Notice, however, that both superluminal and subluminal
dispersion relations give rise to undulations in white hole
flows, in virtue of the symmetry which relates them when
interchanging at the same time the R and L regions; see
Sec. III.E in Ref. [3].

For superluminal quartic dispersion, the outgoing mo-
mentum at zero frequency is found in the supersonic region
and is given by

p�
U ¼ p!!0 ¼ �D1=2

L

�
1þO

�
!

!�
U

��
; (108)

and the asymptotic behavior of the undulation is [3]

��
UðxÞ ¼

cosðp�
Uxþ �UÞffiffiffiffiffiffiffiffiffiffiffiffiffi
4�!L

p : (109)

The phase �U cannot be obtained from the preceding
equations, because it is mainly determined by the
dispersive properties of the modes. Using the results of

Ref. [3], one can establish that, when m ¼ 0, �U ¼
ð�D3=2

L Þ=ð6�Þ þ �=4; see also Ref. [27].

In the presence of ultraviolet dispersion, the width of
frequencies which contribute coherently to G is

!�
U ¼ �D

3
2

L: (110)

Since � can be much larger than �, !�
U can be either

smaller or larger than the Hawking temperature �=2�. In
what follows, we work with !�

U � � where the
Bogoliubov coefficients are well approximated [3] by their
relativistic values computed in preceding sections.
Therefore, the contribution of the low-frequency dispersive
modes is given by

GIRðt; x; x0Þ ¼ 8
Z !�

U

2�=t
j	Tot

! j2d!	��
UðxÞ��

Uðx0Þ; (111)

which is Eq. (104) with �m
U and !U replaced by ��

U and
!�

U . The exact expression of 	Tot
! in Eq. (62) is quite

complicated. To get an undulation, we assume!L � � �
!�

U . In that regime, 	Tot
! is large for !< TH, but for

!> TH, it becomes exponentially small. Thus, one has

Z !�
U

2�=t
j	Tot

! j2d! ’
Z �=2�

2�=t
j	Tot

! j2d!: (112)

In that range of frequencies, 	Tot
! is well approximated by

Eq. (87); therefore,

GIRðt; x; x0Þ ¼
4�

�

�
sinh�1

�
�

2�!L

�

� sinh�1

�
2�

!Lt

��
��

UðxÞ��
Uðx0Þ: (113)

Hence, at late times and for !�
U � �, we obtain

GIRðt; x; x0Þ ¼
4�

�
ln

�
�

�!L

�
��

UðxÞ��
Uðx0Þ: (114)

When considering a BEC, the relationship between the
scalar field � and the density fluctuation �� is �� / @x�
[28]. Hence, the mean value of the equal-time density-
density two-point function is

h@x�ðxÞ@x0�ðx0Þi ¼ �p�
U

�2DL

ln

�
�

�!L

�
	 sinðp�

Uxþ �UÞ

	 sinðp�
Ux

0 þ �UÞ: (115)

This generalizes what was found in Ref. [2] in that, in
the supersonic region, one still finds a short-distance
checker-board pattern in the x, x0 plane, and the undulation
amplitude still grows initially as lnðtÞ. However, when
there is a mass term, it grows only for a finite amount
of time�2�=!L, after which it saturates. The mass there-
fore provides a saturation mechanism which can occur
before nonlinearities take place. Moreover, because p�

U /
� � �, the rms amplitude of the undulation is large.
So far, we have considered only the case where the

initial state is a vacuum. When dealing with a thermal
state, as discussed in Ref. [2], the initial growth rate is no
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longer logarithmic but linear in time. However, the mass
term acts again as an infrared regulator because the initial
distribution of phonons is expressed in terms of �>m,
and not in terms of the constant frequency ! [25]. Hence,
no divergence is found when integrating over ! when
computing the two-point function. In addition, the random
character of the undulation amplitude is fully preserved
when taking into account some initial thermal noise. What
is modified is the undulation rms amplitude. When the
initial temperature Tin is much larger than TH ¼ �=2�,
the above two-point function is, roughly speaking, multi-
plied by Tin=TH.

V. CONCLUSIONS

In this paper, we have studied the consequences of a
mass term in the mode equation on (the analogue of)
Hawking radiation. We showed that the scattering of mas-
sive modes on a stationary black hole horizon is rather
complicated. It contains several mode mixing terms which
occur on various length scales and which interfere with
each other in a nontrivial way. In what follows, we sum-
marize our main results.

Notwithstanding the fact that the mass does not affect
the near horizon mode mixing, as can be seen in Eq. (33),
the mass does regularize the infrared behavior of the net in/
out Bogoliubov transformation in Eq. (83). The reason for
this is the extra mode mixing, described by Sfar of Eq. (37),
which occurs in the supersonic inside region, and which
interferes with the near horizon scattering so as to cancel
out the divergence in 1=! of the j	!j2 coefficient. Indeed,
the squared norm of the total Bogoliubov coefficient satu-
rates as j	Tot

! j2 � �=2�!L for ! ! 0, where !L is the
threshold frequency of Eq. (84). As a consequence, the
undulation rms amplitudes now saturate after a lapse of
time �2�=!L and then stay constant. This has to be
contrasted with the massless case where the saturation of
the amplitude can only occur because of nonlinearities, or
dissipation, in the system.

The presence of a mass induces a new type of undulation
in the supersonic region which exists in black hole flows.
Unlike the undulations occurring in white hole flows which
are due to some ultraviolet dispersion, this new type occurs
in the hydrodynamical regime if the mass term is small
enough. It will thus appear both in superluminal and sub-
luminal media. However, as shown by Eq. (107), the
typical energy density carried by an undulation is small,
and thus this new type should be difficult to detect.

Although the S-matrix coefficients governing black hole
and white hole flows are the same, in virtue of the trans-
formation v ! �v which maps one case onto the other,
the frequency ranges which contribute to the massive and
the dispersive undulations are very different as can be seen
by comparing Eq. (103) with Eq. (110). As a result, the
white hole undulations possess larger amplitudes. In addi-
tion, since the wavelength of the undulation is smaller

in the white hole case, it gives rise to even larger ampli-
tudes for a BEC, as can be seen from Eq. (115). These
results might also be relevant for surface waves where
‘‘transversal instabilities’’ have been observed [29].
Finally, we emphasize that the properties of the spec-

trum and the undulations depend on the massm essentially
through the effective frequencies !L and !R of Eq. (84).
These frequencies are both proportional to m but also
depend in a nontrivial way onDL and DR which determine
the spatial extension of the near horizon region, on the
inside and on the outside, respectively. Therefore, as in the
case of ultraviolet dispersion, these two quantities should
be conceived as the most relevant geometrical properties,
after the surface gravity �.

ACKNOWLEDGMENTS

We are grateful to Iacopo Carusotto for discussions and
numerical simulations about the statistical nature of undu-
lations in BEC. We also thank Carlos Mayoral for collabo-
ration at an early stage of this work, together with Xavier
Busch and Yannis Bardoux for discussions. A. F. would
like to thank the LPT Orsay for hospitality during various
visits. This work was supported in part by the National
Science Foundation under Grant No. PHY-0856050 to
Wake Forest University, as well as the ANR Grant
No. STR-COSMO, ANR-09-BLAN-0157.

APPENDIX A: GENERAL ACOUSTIC
D’ALEMBERT EQUATION

In the hydrodynamical approximation, i.e., when
neglecting short distance dispersion, linear density per-
turbations in a moving fluid obey a four-dimensional
d’Alembert equation, in a curved space-time [1,10,11,30]:

1ffiffiffiffiffiffiffi�g
p @�ð

ffiffiffiffiffiffiffi�g
p

g�
@
�Þ ¼ 0: (A1)

The effective metric is

ds2 ¼ �

c
½c2dt2 � ðdx� vxdtÞ2 � ðdy� vydtÞ2

� ðdx� vzdtÞ2�; (A2)

where � is the density of the fluid, c the sound speed, and v
the velocity of the background flow.
When assuming that the flow profile is one dimensional

and homogeneous in the perpendicular dimensions, the
mode equation becomes effectively two dimensional be-
cause the transverse wave number is constant. In what
follows, its norm is denoted by p?. Assuming in addition
that the flow is stationary, at fixed frequency !, the mode
equation reads
�
1

�
ð!þ i@xvÞ

�

c2
ð!þ iv@xÞ þ

1

�
@x�@x �p2

?

�
�!ðxÞ ¼ 0:

(A3)
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In the body of the paper, we assumed �ðxÞ ¼ cðxÞ ¼ 1.
This violates the continuity equation of fluid mechanics
[31], but it allows us to study exactly soluble models.

It is also interesting to see how Eq. (23) is altered by
varying cðxÞ and �ðxÞ. Modifying the field redefinition of
Eq. (22),

�!ðxÞ ¼
e
�i!

R
x vðx0 Þdx0
c2ðx0Þ�v2ðx0 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j �ðc2�v2Þ

c2
j

q ’!ðxÞ; (A4)

we obtain

�
�@2x þ

�
VGðxÞ þ

p2
?c

2

c2 � v2
� !2c2

ðc2 � v2Þ2
��

’!ðxÞ ¼ 0;

(A5)

where the effective potential is

VGðxÞ ¼
@2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j �ðc2�v2Þ

c2
j

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j �ðc2�v2Þ

c2
j

q : (A6)

We see that this equation has exactly the same structure as
the simplified equation (23) which was used for some of
the calculations in this paper.

APPENDIX B: HYPERGEOMETRIC SOLUTIONS

We provide the exact solutions of Eq. (23) for the
profiles considered in Secs. III B and III C. In both cases,
the solutions are hypergeometric functions. For definite-
ness, we recall their definition

Fða; b; c; zÞ ¼
X
n2N

�ðaþ nÞ�ðbþ nÞ�ðcÞ
�ðaÞ�ðbÞ�ðcþ nÞ

zn

n!
; (B1)

where a, b and z are complex numbers, and c is a non-
negative integer. Their main properties and the asymptotic
behaviors of these functions can be found in Refs. [19,20].
We start with the profile of Eq. (58) and use the notation

of Eq. (59). For x > 0, the only ABM is

’!ðxÞ ¼ Cðe2�x
D � 1Þ12ð1� e�

2�x
D Þ�i$e�

2�x
D Fð1� i$þ i ��þ; 1� i$� i ��þ; 2; e�

2�x
D Þ;

where C is an arbitrary constant. For x < 0, the general solution is

’!ðxÞ¼Að1�e
2�x
D Þ12ðe�2�x

D �1Þi$Fði$� i ��þ;i$þ i ��þ;1þ2i$;1�e�
2�x
D Þ;

þBð1�e
2�x
D Þ12ðe�2�x

D �1Þ�i$Fð�i$� i ��þ;�i$þ i ��þ;1�2i$;1�e�
2�x
D Þ;

with A and B arbitrary constants.
For the profile in Eq. (72), and for x > 0, the general solution is

’!ðxÞ ¼ Að1� e�
2�x
D Þ12ðe2�x

D � 1Þi$Fði$� i ��; i$þ i ��; 1þ 2i$; 1� e
2�x
D Þ;

þ Bð1� e�
2�x
D Þ12ðe2�x

D � 1Þ�i$Fð�i$� i ��;�i$þ i ��; 1� 2i$; 1� e
2�x
D Þ:

Here, A and B are arbitrary constants, and �� ¼ ��> for !>!L, and
�� ¼ i ��< for !<!L. The definitions of these

dimensionless quantities are given in Sec. III C.
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