Solution OF Elementary Problem E 2558. Proposed By a. Torchinsky, Cornell University

Suppose that $\sum a_n$ is a divergent series of positive terms, let $s_n = a_1 + \dots + a_n$ for n=1,2,... For which values of p does the series $\sum a_n / s_n^p$ converge? Solution by Elmer K. Hayashi. We prove a more general theorem from which we deduce

that $\sum a_n / s_n^p$ if and only if p > 1. Theorem. Let f(x), for x > 0, be any nonnegative, continuous, monotonically

decreasing, real-valued function. if $\sum a_n$ is a divergent series of positive terms and if $s_{\scriptscriptstyle n}=a_{\scriptscriptstyle 1}+\cdots+a_{\scriptscriptstyle n}$ for n=1,2,... , then

$$\sum a_n f(s_n)$$
 converges if $\int_{s_1}^{\infty} f(x) dx < \infty$

and

$$\sum a_n f(s_{n-1})$$
 diverges if $\int_{s_1}^{\infty} f(x) dx = \infty$

Proof:.....