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29. (a) First consider a single spring with spring constant k and unstretched length L. One end is attached
to a wall and the other is attached to an object. If it is elongated by ∆x the magnitude of the
force it exerts on the object is F = k∆x. Now consider it to be two springs, with spring constants
k1 and k2, arranged so spring 1 is attached to the object. If spring 1 is elongated by ∆x1 then
the magnitude of the force exerted on the object is F = k1∆x1. This must be the same as the
force of the single spring, so k∆x = k1∆x1. We must determine the relationship between ∆x
and ∆x1. The springs are uniform so equal unstretched lengths are elongated by the same amount
and the elongation of any portion of the spring is proportional to its unstretched length. This
means spring 1 is elongated by ∆x1 = CL1 and spring 2 is elongated by ∆x2 = CL2, where C is a
constant of proportionality. The total elongation is ∆x = ∆x1+∆x2 = C(L1+L2) = CL2(n+1),
where L1 = nL2 was used to obtain the last form. Since L2 = L1/n, this can also be written
∆x = CL1(n+ 1)/n. We substitute ∆x1 = CL1 and ∆x = CL1(n+ 1)/n into k∆x = k1∆x1 and
solve for k1. The result is k1 = k(n+ 1)/n.

(b) Now suppose the object is placed at the other end of the composite spring, so spring 2 exerts a
force on it. Now k∆x = k2∆x2. We use ∆x2 = CL2 and ∆x = CL2(n+1), then solve for k2. The
result is k2 = k(n+ 1).

(c) To find the frequency when spring 1 is attached to mass m, we replace k in (1/2π)
√

k/m with
k(n+ 1)/n to obtain

f1 =
1
2π

√
(n+ 1)k

nm
=

√
n+ 1

n
f

where the substitution f = (1/2π)
√

k/m was made.

(d) To find the frequency when spring 2 is attached to the mass, we replace k with k(n+ 1) to obtain

f2 =
1
2π

√
(n+ 1)k

m
=

√
n+ 1f

where the same substitution was made.



39. (a) Assume the bullet becomes embedded and moves with the block before the block moves a significant
distance. Then the momentum of the bullet-block system is conserved during the collision. Let m
be the mass of the bullet, M be the mass of the block, v0 be the initial speed of the bullet, and v
be the final speed of the block and bullet. Conservation of momentum yields mv0 = (m + M)v, so

v =
mv0

m + M
=

(0.050 kg)(150 m/s)
0.050 kg + 4.0 kg

= 1.85 m/s .

When the block is in its initial position the spring and gravitational forces balance, so the spring is
elongated by Mg/k. After the collision, however, the block oscillates with simple harmonic motion
about the point where the spring and gravitational forces balance with the bullet embedded. At
this point the spring is elongated a distance � = (M + m)g/k, somewhat different from the initial
elongation. Mechanical energy is conserved during the oscillation. At the initial position, just
after the bullet is embedded, the kinetic energy is 1

2 (M + m)v2 and the elastic potential energy is
1
2k(Mg/k)2. We take the gravitational potential energy to be zero at this point. When the block
and bullet reach the highest point in their motion the kinetic energy is zero. The block is then a
distance ym above the position where the spring and gravitational forces balance. Note that ym is
the amplitude of the motion. The spring is compressed by ym − �, so the elastic potential energy
is 1

2k(ym − �)2. The gravitational potential energy is (M + m)gym. Conservation of mechanical
energy yields

1
2

(M + m)v2 +
1
2
k

(
Mg

k

)2

=
1
2
k(ym − �)2 + (M + m)gym .

We substitute � = (M + m)g/k. Algebraic manipulation leads to

ym =

√
(m + M)v2

k
− mg2

k2 (2M + m)

=

√
(0.050 kg + 4.0 kg)(1.85 m/s)2

500 N/m
− (0.050 kg)(9.8 m/s2)2

(500 N/m)2
[2(4.0 kg) + 0.050 kg]

= 0.166 m .

(b) The original energy of the bullet is E0 = 1
2mv2

0 = 1
2 (0.050 kg)(150 m/s)2 = 563 J. The kinetic

energy of the bullet-block system just after the collision is

E =
1
2

(m + M)v2 =
1
2

(0.050 kg + 4.0 kg)(1.85 m/s)2 = 6.94 J .

Since the block does not move significantly during the collision, the elastic and gravitational po-
tential energies do not change. Thus, E is the energy that is transferred. The ratio is E/E0 =
(6.94 J)/(563 J) = 0.0123 or 1.23%.



53. If the torque exerted by the spring on the rod is proportional to the angle of rotation of the rod and
if the torque tends to pull the rod toward its equilibrium orientation, then the rod will oscillate in
simple harmonic motion. If τ = −Cθ, where τ is the torque, θ is the angle of rotation, and C is a
constant of proportionality, then the angular frequency of oscillation is ω =

√
C/I and the period is

T = 2π/ω = 2π
√

I/C, where I is the rotational inertia of the rod. The plan is to find the torque as a
function of θ and identify the constant C in terms of given quantities. This immediately gives the period
in terms of given quantities. Let 	0 be the distance from the pivot point to the wall. This is also the
equilibrium length of the spring. Suppose the rod turns through the angle θ, with the left end moving
away from the wall. This end is now (L/2) sin θ further from the wall and has moved (L/2)(1 − cos θ)
to the right. The length of the spring is now

√
(L/2)2(1 − cos θ)2 + [	0 + (L/2) sin θ]2. If the angle θ

is small we may approximate cos θ with 1 and sin θ with θ in radians. Then the length of the spring
is given by 	0 + Lθ/2 and its elongation is ∆x = Lθ/2. The force it exerts on the rod has magnitude
F = k∆x = kLθ/2. Since θ is small we may approximate the torque exerted by the spring on the rod
by τ = −FL/2, where the pivot point was taken as the origin. Thus τ = −(kL2/4)θ. The constant of
proportionality C that relates the torque and angle of rotation is C = kL2/4. The rotational inertia for
a rod pivoted at its center is I = mL2/12, where m is its mass. See Table 11–2. Thus the period of
oscillation is

T = 2π

√
I

C
= 2π

√
mL2/12
kL2/4

= 2π
√

m

3k
.
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