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(a), (b), and (c) Take the y axis to be positive in the upward direction. Then the work done
by the gravitational force as the roller coaster goes from a place with y coordinate yi to a
place with y coordinate yf is given by

W = −mg(yf − yi) ,

where m is the mass of the roller coaster. The work is negative if the final position is above
the initial position (yf > yi) and is positive if the final position is below the initial position
(yf < yi). For point A, yf − yi = 0; for point B, yf − yi = −h/2; for point C, yf − yi = −h.

(d) and (e) If the gravitational potential energy is taken to be zero at a place with the y

coordinate of the roller coaster is yi, then the potential energy when it is at a place where
the y coordinate is yf is given by

U = −W = mg(yf − yi) .

This is positive is yf > yi and negative if yf < yi. Take y = 0 at point C. Then for point B,
yf − yi = h/2 and for point A, yf − yi = h.

(f) The gravitational potential energy is directly proportional to the mass of the roller coaster.
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(a) and (b) Multiply the gravitational force on the block by the vertical distance the block
travels to each of the points. In (a) it starts a distance 5R above the bottom of the loop and
ends a distance R above the bottom. In (b) it starts at the same place but ends a distance
2R above the bottom of the loop.

(c), (d), and (e) The potential energy when the block is a vertical distance h above the point
where the potential energy is zero is given by U = mgh. Calculate h for each of the given
points.

(f) Recall that the gravitational potential energy depends only on the initial and final posi-
tions of objects in the system.
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(a) Take the y axis to be positive in the upward direction. Then the work done by the force
of gravity as the ball goes from a place with y coordinate yi to a place with y coordinate yf

is given by
W = −mg(yf − yi) ,

where m is the mass of the ball. When the ball is at its lowest point it is a distance L below
the pivot point. When it is at the position shown on Fig. 8–29 it is a vertical distance L cos θ
below the pivot point. Thus

yf − yi = mgL − mgL cos θ = mgL(1 − cos θ) .

(b) The change in the gravitational potential energy of the Earth-ball system is the negative
of the work done by the force of gravity:

∆U = −W = −mgL(1 − cos θ) .

(c) The gravitational potential energy decreases as the ball falls. If it is zero at the lowest
point then it must be greater at the release point and it is greater by mgL(1 − cos θ).

(d) As θ increases, cos θ decreases and 1 − cos θ increases.
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(a) Two forces act on the ball, the force of gravity and the force of the rod. The force of the
rod does no work since it is perpendicular to the path of the ball. The gravitational force is
conservative. The mechanical energy of the ball-Earth system is conserved.

Take the gravitational potential energy to be zero when the ball is at the bottom of its swing.
The initial potential energy is then mgL(1 − cos θ), the initial kinetic energy is zero, the
final potential energy is zero, and the final kinetic energy is 1

2mv2, where v is the speed of
the ball at the bottom of its swing. Conservation of mechanical energy yields

mgL(1 − cos θ) =
1
2
mv2 .

Solve for v.

(b) Notice that the mass cancels from the conservation of mechanical energy equation.
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(a) Take the elastic potential energy to be zero when the spring is relaxed. The potential
energy when it is compressed is then given by

U =
1
2
kx2 ,

where k is the spring constant and x is the extent of the compression.

(b) The incline is frictionless, the normal force does zero work, and gravity is a conservative
force. The mechanical energy of the block-spring-Earth system is conserved. This energy is
the sum of the kinetic energy of the block, the gravitational potential energy Ug of the block
and Earth, and the elastic potential energy Ue of the block and spring.

The kinetic energy of the block is zero at the beginning and end of the interval so conservation
of mechanical energy yields

∆Ug + ∆Ue = 0 .

Use ∆Ue = −1
2kx2 to shown that ∆Ug = +1

2kx2.

(c) The change in the gravitational potential energy is given by ∆Ug = mgh, where m is
the mass of the block and h is the vertical height of the highest point. If d is the distance
along the incline, then d sin θ = h, where θ is the angle of the incline.

Solve mgd sin θ = 1
2kx2 for d.

[
ans: (a) 39.2 J; (b) 39.2 J; (c) 4.00 m

]
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Two forces act on Tarzan: the force of gravity mg, down, and the force of the vine T , inward
along the line from Tarzan to the center of his circular path. Here m is Tarzan’s mass. The
combination provides the centripetal force that keeps him on his circular path. The force of
the vine has its greatest magnitude when Tarzan is at the bottom of his swing. Then the
force of the vine is upward. Calculate the force of vine when Tarzan is at the low point and
see if it exceeds 950 N.

Take the upward direction to be positive. At the bottom of the swing the net force on Tarzan
is T − mg. At this point Tarzan’s acceleration is upward. He is not speeding up or slowing
down. Thus the magnitude of Tarzan’s acceleration is a = v2/L, where v is his speed at
the bottom of the swing and L is the length of the vine (and the radius of Tarzan’s circular
path). Newton’s second law yields

T − mg =
mv2

L
.

To calculate the force of the vine you need to know Tarzan’s speed at the bottom of the
swing. Use conservation of mechanical energy. The only force that does work on Tarzan is the
gravitational force and this force is conservative. Note that the vine is always perpendicular
to Tarzan’s velocity and therefore does zero work. Take the gravitational potential energy
to be zero when Tarzan is on the cliff. Then the gravitational potential energy when he is at
the bottom of the swing is Uf = −mgd, where d is vertical distance of his descent (3.2 m).
His initial kinetic energy is zero and his final kinetic energy is Kf = 1

2mv2, where v is his
speed at the bottom of the swing. Solve

0 =
1
2
mv2 − mgd

for v2.

Now go back to T − mg = mv2/L and solve for T .
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The only force that does work on the ball is the force of gravity and this force is conservative.
The string is always perpendicular to the velocity of the ball and so does zero work. Thus
mechanical energy is conserved and you may use it to compute the speed of the ball when
it is at various positions.

Take the y axis to be vertical with up being the positive direction and place the origin at
the pivot point of the pendulum. Take the gravitational potential energy of the ball-Earth
system to zero when the y coordinate of the ball is zero. Then the gravitational potential
energy when the ball has coordinate y is U = mgy, where m is the mass of the ball.

When the string makes the angle θ with the vertical the ball is a vertical distance L cos θ
below the pivot point and the gravitational potential energy is U = −mgL cos θ. Let θi

(= 30.0◦) be the initial angle of the pendulum and θf be its final angle (at the end of some
interval). When θ = θi the kinetic energy is zero. Write the kinetic energy for some other
angle as 1

2mv2, where v is the speed of the ball (an unknown quantity). Conservation of
mechanical energy yields

−mgL cos θi =
1
2
mv2 − mgL cos θ .

(a) Put θ = 20.0◦ and solve for v.

(b) The maximum speed occurs when cos θ has its greatest value. This is when θ has its
least value and the least value is zero. Put θ equal to zero and solve for v.

(c) Put v equal to one-third of the value you found in part (b) and solve for cos θ, then for
θ.
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The only forces that do work on the canister are the force of gravity and the spring force.
Both of these are conservative, so the mechanical energy of the canister-Earth-spring system
is conserved. Note that the normal force of the incline on the canister is perpendicular to
the displacement of the canister and so does zero work.

Take the gravitational potential energy to zero when the canister is at the bottom of the
incline. When the canister is a distance d up the incline (as measured along the incline) then
it is a vertical distance d sin 37.0◦ above the bottom and the gravitational potential energy
is Ug = mgd sin 37.0◦, where m is the mass of the canister.

Take the elastic potential energy of the spring to be zero when the spring is in its relaxed
state. When the spring is compressed (or expanded) by x the elastic potential energy is
Ue = 1

2kx2, where k is the spring constant.

(a) Initially the canister is di = 1.20 m from the bottom of the incline and has zero kinetic
energy. When it leaves the spring it is df = 1.00 m from the bottom of the incline and
its kinetic energy is Kf = 1

2mv2, where v is its speed then. The initial compression of the
spring is xi = 0.200 m and the final compression is xf = 0. Conservation of mechanical
energy yields

mgdi sin 37.0◦ +
1
2
kx2

i =
1
2
mv2 + mgdf sin 37.0◦ .

Solve for v.

(b) Now set df equal to zero and solve for v.
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(a) Since the force and potential energy are related by

F = −dU

dx
,

you want to calculate the slope of the curve at x = 2.0 m. The force is the negative of the
value you find.

(b) First calculate the mechanical energy Emec. Add the potential and kinetic energies when
the particle is at x = 2.0 m. Read the potential energy from the graph and calculate the
kinetic energy using K = 1

2mv2. Now draw a horizontal line across the graph at U = Emec

and note the values of x where it crosses the curve. At these points the kinetic energy is 0
and the particle reverses its direction of motion.

(c) The mechanical energy is

Emec =
1
2
mv2 + U .

Read the value of U at x = 7.0 m from the graph and us the conservation law calculate v.
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The thermal energy of the floor and cube together increases by fd, where f is the frictional
force of the floor on the cube and d is the distance the cube is pushed. Since the cube moves
with constant speed, Newton’s second law tells us that the net force on the cube is zero.
Since the only two horizontal forces that push on the cube are the applied force and the
frictional force, these two forces have the same magnitude (and are in opposite directions).
Substitute f = 15 N and d = 3.0 m into ∆Eth = fd to find the total increase in thermal
energy. The increase in the thermal energy of the floor is this result minus 20 J.
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The worker’s force is constant so the work is does is given by W = �F · �d, where �F is the force
and �d is the displacement of the block. The force makes an angle of 32◦ with the horizontal,
so W = Fd cos 32◦. You need to find the magnitude F of the worker’s force.

Use Newton’s second law. Draw a free body diagram for the block. Four forces act on it: the
worker’s force F , at an angle of 32◦ below the horizontal, the force of gravity mg, down, the
normal force N of the floor, up, and the frictional force f , opposite the direction of motion.
Take the x axis to be horizontal and positive in the direction of motion. Take the y axis
to be vertical and in the direction of the normal force. Then, since the acceleration of the
block is zero, the x component of Newton’s second law is

F cos 32◦ − µkN = 0

and the y component is
N − F sin 32◦ − mg = 0 .

Here µkN , where µk is the coefficient of kinetic friction, was used for the frictional force.
Solve the y component equation for N and use the result to substitute for N in the x
component equation, then solve for F .

(b) The worker’s force does work on the block but the kinetic energy of the block does not
increase. All the work done by the worker’s force must end up as thermal energy in the block
and floor.
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Calculate the initial and final mechanical energies and find their difference. Take the system
to consist of the Frisbee and Earth and include both kinetic and potential energies. Use
U = mgh, where h is the height of the Frisbee above the ground and m is the mass of
the Frisbee, to compute the potential energy. Use K = 1

2mv2, where v is the speed of the
Frisbee, to compute the kinetic energy.
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Initially the mechanical energy of the block-spring system is entirely elastic potential energy.
The block has zero kinetic energy. Thus the mechanical energy is initially Emec i = 1

2kx2,
where k is the spring constant and x is the initial compression of the spring. After the block
has come to rest on the table top all this energy has been converted to thermal energy in
the block and table top. In terms of the frictional force f and the length d of the slide,
the increase in total thermal energy (and the decrease in mechanical energy) is given by
∆Eth = fd. Now f = µkN , where µk is the coefficient of kinetic friction and N is the
magnitude of the normal force of the table top on the block. Since the table top is horizontal
N = mg, where m is the mass of the block. Thus ∆Eth = µkmgd. Equate this to 1

2kx2 and
solve for µk.
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(a) Take the system to consist of the crate, the ramp, and Earth and let d be the distance
the crate slides down the ramp. The gravitational potential energy changes by ∆U = −mgh
and the kinetic energy changes by ∆K = 1

2mv2, where h is the original height of the crate
above the factory floor and v is its speed at the bottom of the ramp. The force of friction
changes the mechanical energy by −fd so

−mgh +
1
2
mv2 = −fd .

A little geometry shows that h = d sin θ, where θ is the angle between the ramp and the
horizontal. Furthermore,

f = µkN = µkmg cos θ ,

where N (= mg cos θ) is the normal force of the ramp on the crate. Solve

−mgd sin θ +
1
2
mv2 = −µkmgd cos θ

for v.

(b) As it starts across the floor its kinetic energy is 1
2mv2, where v is its speed at the bottom

of the ramp (the answer to a). When it stops sliding its kinetic energy is zero. Because
the floor is horizontal the potential energy does not change. If the crate slides a distance d
across the floor, the mechanical energy changes by −fd = −µkNd = −µkmgd. Thus

−1
2
mv2 = −µkmgd .

Solve for d.

(c) Notice that the mass cancels from the equations you used.


