CHAPTER 21 HINT FOR EXERCISE 2

The change in entropy is given by

AS:/%,

where T is the temperature in kelvins. Since the process is isothermal AS = Q /T, where @
is the energy taken in as heat. Solve for (). Use T' = T + 273 to convert the temperature
Tc in degrees Celsius to kelvins.
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(a) In an isothermal expansion the temperature has the same value at every stage.

(b) In a constant pressure process the pressure has the same value at every stage. Since the

gas is ideal this means the change in temperature is

~_ pAV
 nR

Since AV = Vy, AT = pVy/nR = T, and the final temperature is 275.

AT

(c) For an adiabatic process
poVy =pV7,

where v is the ratio C},/Cy of the heat capacities. Since the gas is ideal

TV =TVt

y—1
ron(5)7

Since the gas is monatomic v = 1.667. Use V,/V = 1/2.

as— [

and for any infinitesimal part of a process

Thus

(d) The change in entropy is given by

dQ = dE + AW = nCy dT + pdV .

For each of the three processes dV is positive. For the isothermal process dT is zero and
for the isobaric process dT' is positive. Use this to find the signs of dQ) and AS. The
temperature decreases during the adiabatic process but you immediately know something

about the energy absorbed as heat during this process.
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(a) During any infinitesimal portion of the process the energy d@ taken in by the gas as heat
is related to the change dS in the entropy of the gas by

dQ = TdS,

where T is the temperature of the gas. Thus for the whole process
Q= / Tds'.

(b) For any process the change A Ej,¢ in the internal energy of the gas is related to the change
AT in the temperature by

This the area under the graph.

AEint = TLCV AT,
where Cy is molar heat capacity. In this case the gas is monatomic, so Cy = (3/2)R.

(c) Use the first law of thermodynamics: AE;,, = Q — W.
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(a) Points 1 and 2 lie on the same isothermal so, according to the ideal gas law,
Vi =paVa.

Substitute V5 = 3.00V; and solve for p,.

Points 1 and 3 lie on the same adiabat so
mVy = 203‘/3,7 .

Substitute V3 = 3.00V; and solve for p3. For a diatomic gas v = 1.4.

To find T3, use the ideal gas law in the form
mVi  psVs

T, T4
(b) Over the isothermal portion of the cycle, the work done by the gas is

V- \%
2 2 T
W = pde/ BN vy aRTI Y2
Vi v, V Vi

Substitute for V5.

The change in internal energy is zero since, for an ideal gas, it depends only on the temper-
ature. The first law of thermodynamics then reduces to Q = W. The change in entropy is

given by o
AS = T

Over the constant volume portion of the cycle W = 0. The change in the internal energy is

AFE;y =nCy AT = (5/2)nR(T5 — Ty) .

Substitute for the temperatures in terms of R and T3. The first law reduces to
Q = AFEy, .

The change in entropy is given by

AS = / % —nCy /T j?’ % — (5/2)nRIn(Ty/Ty).

Substitute for the temperatures.

Over the adiabatic portion of the cycle @) = 0.

The work is given by

Vi Vi Y Y
W= [ pav= / P gy = DL ey oy
Vs v, V7 L =7

Substitute for V3.
The first law reduces to AE, = —W.
The change in entropy is 0.
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(a) The heat absorbed by the lead is given by mpcr(Tr — 1), where my, is the mass of the
lead, ¢y, is its specific heat (128 J/kg - K), T}, is its initial temperature, and Tr is the final
temperature. The heat rejected by the copper is moeo(Tr — Te), where me is the mass of
the copper, c¢ is its specific heat (386 J/kg - K), and T is its initial temperature. Since no
energy entered or left the two-block system, these heats must sum to zero. Solve

mLCL(TF — TL) + mccc(TF — Tc) =0

for Tr.

(b) Since no work is done, the energy rejected as heat by the copper comes from its store
of internal energy, while the energy accepted as heat by the lead enters its store of internal
energy. No energy is lost so these are equal in magnitude.

(¢) The change in the entropy of the copper is

d Trdr T
ASC:/?QZchc/Ti ?chcclnT—g.

Similarly, the change in the entropy of the lead is
ASL =mrprcy, In T—Z], .

Add the two values to obtain the change in the entropy of the system.

[ans:  (a) 320K; (b) 0; (c) 1.72J/K]
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Mass m of ice changes temperature from 77 (= —10°C) to Ty (= 0°C). It absorbs energy
Q1 = mc;(Ty, — T1) as heat and its entropy changes by

T
2dT T
ASlz/gzmci/Tl %:mcilnf.

Here ¢; is the specific heat of ice (2220 J/kg). The ice then melts. It absorbs energy Qs =
mLp as heat. Here Lp is the heat of fusion for water (333 x 10 J/kg). Its entropy increases

by
Q2
ASy = —.
2 =7
Finally, the temperature of the resulting water increases from 75 to the final equilibrium
temperature T3 (= 15° C). It absorbs energy Q3 = mc,, (T3 — T») as heat. Here ¢, is the

specific heat of water (4190 J/kg). Its entropy increases by

T
AS3 = m;cy,In T
Since the mass of water in the lake is so large its temperature does not change. Its entropy
changes by
AS; — _Q1+Q2+Q3'
T

Don’t forget to convert T3 to kelvins when computing AS; and ASy.

[ ans: 0.76 J/K |
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First find the final temperature of the system. Let m; be the mass of the ice cube, my,
be the mass of the original water, T7 be the initial temperature of the ice, and Ty be the
initial temperature of the water. Assume that all the ice melts and the temperature of the
resulting ice water increases to T'r. The energy absorbed as heat by the ice and the resulting
ice water is given by

Q = m[C[(Tm — T[) +myrLr+ m]CW(Tf — Tm) ,

where Ty, is the melting point of ice (0° C or 273 K), ¢; (= 2220 J/kg - K) is the specific heat
of ice, ey (= 4190 J/kg - K) is the specific heat of water, and L; (= 333 x 10® J/kg) is heat
of fusion of water.

The temperature of the original water decreases from Ty to Ty and the energy removed
from it as heat is given by

Q = chW(TW — Tf) .
Since all of the energy removed from the original water goes into the ice and the resulting ice
water, these two expressions for () must be equal. Equate the two expressions to each other
and solve for Ty. You may use values of T7, Ty, and 75, on either the Celsius or Kelvin
scale. The answer will be on the same scale.

Now compute the entropy changes.

The entropy change for the ice as its temperature increases from 77 to T, is

T,
" mycr
dT = mperIn =2

AS| = .
' r, T 17

The entropy change for the ice as it melts is

myL
ASQI jiml.

The entropy change for the ice water as its temperature increases from 715, to T is

T m cw T
Ang/ d dT:m[chn—f.
r. T T

The entropy change for the original water as its temperature decreases from Ty to T is

mwew dT = mw cw In —f .
Ty Tw

ASy =

You must use temperatures on the Kelvin scale to evaluate these expressions.

To find the entropy change for the system, add the four contributions.
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(a) Evaluate
p = (5.00kPa)eVi—V)/a

with V = V.

(b) Solve the ideal gas equation
pyVy =nhTy

for T'y. Here py is the final pressure and T is the final temperature.
(c¢) The work done by the gas is given by

\%

Vi g
W= / pdV = (5.00 x 10? Pa)/ eVieVi/a qy
Vi v,

To evaluate the integral note that e(Vi=V)/@ = ¢Vi/ae=V/a_ Thug

V,

f
W = (5.00 x 10° Pa)ewa/ e”V/eqv.

Vi

(d) Consider an isothermal expansion from volume V; to volume V; at temperature Tj,
followed by a change in temperature from T} to T at constant volume (V). For the first
process the internal energy of the gas does not change, so according to the first law of
thermodynamics the energy taken in as heat is equal to the work done by the gas. The
entropy change is

Q w
AS =2 =
=TT
The work is v v
s ' nRT;
W:/ pde/ MY Gy
% v, V

where the ideal gas law was used to substitute for p. Note that this process is quite different
from the actual process.

For the second process

s nCy
ASy = / —dT,
2 T T

where Cy (= 3RT) is the molar specific heat at constant volume for a monatomic ideal gas.

The entropy change for the gas is the sum of the entropy changes for the two processes.
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The efficiency of a Carnot engine is given by

where T7, is the temperature of the low-temperature reservoir and Ty is the temperature of
the high-temperature reservoir. These temperatures must be in kelvins. For each of the two
efficiencies solve for Ty, then calculate the difference.
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During any infinitesimal portion of the cycle the energy taken in by the working substance
as heat is given by d@Q) = T'dS, where T' is the temperature and d.S is the entropy change.

During any finite portion
Q= / Tds.

During portions in which the entropy is increasing @) is positive, indicating that energy is
entering the working substance. During portion in which the entropy is decreasing @ is
negative, indicating that energy is leaving the working substance. Over the whole cycle
Q = [T dS gives the net energy transferred to the working substance.

For each portion the integral can be computed as the area under the curve. Thus its value is
the area under that portion of the curve for which the entropy is increasing minus the area
under that portion for which the entropy is decreasing.
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Use the definition of efficiency for a heat engine. The total work done is W; + W5, where
W7 is the work done by the first stage and W5 is the work done by the second stage. The
energy input is the energy () taken in as heat at the high temperature T;. Thus

5—W1+W2
Q1

The first law of thermodynamics tells us that W, = Q1 — Q2 and Wy = Q2 — Q5. Make these
replacements in the definition of efficiency and divide both the numerator and denominator
by @:. Since both stages are ideal (reversible)

& _ T

Q: T
and

Q@ _1p

Qs T
Thus

Qs _ Ty

Q1 T

Make this substitution.
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(a) For the adiabatic process BC,
pB‘/v’y = pCVC”ya

where 7 is the ratio C),,/Cy of the heat capacities. Use pc = pp/32 and Vi = 8Vp, then
solve for 7. If the gas is monatomic v = 5/3; if it is diatomic v = 7/5; if it is polyatomic
v =4/3.

(b) The efficiency is the net work done by the engine divided by the energy taken in as heat.
Energy is taken in as heat only during the AB portion of the cycle. (Energy is released
as heat during the CD portion and no energy is transferred as heat during the adiabatic
portions.) The portion AB is at constant pressure, so energy taken in as heat is given
by Qap = nCp AT, where C, is the molar heat capacity at constant pressure. Use the
ideal gas law pV = nRT to write AT in terms of the pressures and volumes. Also use
Cp = (5/2)R, the value of the molar heat capacity for a monatomic gas. You should obtain

Qap = (5/2)poVo.

You must now find expressions in terms of py and V; for the work done during each part of

the cycle. Use
W = /pdV.

For each of the two constant pressure processes W = p AV. For each of the two adiabatic
processes pV7 = K, where K is a constant. Thus p = KV ~7 and the work done during the
BC portion of the cycle is

C pV

B_l_'Y

K
Wge = / KV dV = — vvlf7

B [t
You should get Wge = 2.25pgVy. Similarly, Wpa = —1.125p, V4.



CHAPTER 21 HINT FOR EXERCISE 34

(a) The coefficient of performance K of a refrigerator is given by

_ Q|

K =2
(W

where (Qp, is the energy absorbed as heat by the working substance from the cold compart-
ment and W is the work done by the working substance, both during one cycle. According
to the problem statement Q;, = 600J and W = —200J.

(b) The first law of thermodynamics tells us that
AV :QL+QH -W.

The magnitude of Q)i gives the energy that is transferred to the high temperature reservoir
(the kitchen). Qg is actually negative since energy leaves the working substance. Over a
cycle the change AF;, in the internal energy of the working substance is zero. Solve for

QmH|.
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The energy that is extracted as heat from the freezing compartment is given by @ = KW,
where K is coefficient of performance and W is the work done by the refrigerator on the
working substance. The coefficient of performance of an ideal refrigerator is given by
Ty —T
K=t "L
Tc

where Ty is the temperature of the outside air and T is the temperature of the freezing
compartment, both in kelvins. The work done in time At is W = P At, where P is the
power of the refrigerator.
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The total number of microstates for a configuration in which n; molecules are on one side
of the box and ny molecules are on the other side is

N!
N ﬂl!ng! ’

Here n; = N/2 and ny = N/2. N is the total number of molecules (50 for parts (a), (b),
and (c), 100 for part (d), and 200 for part (e).

The total number of microstates is given by Npyiero = 2V (see Exercise 45).

The fraction of the time that the system spends with half the molecules on each side of the

box is
w

f - Nmicro .

As N increases, which increases more rapidly, W or Npyicro?




