Chapter 20 Hint for Exercise 6

Use the ideal gas law $p V=N k T$, where p is the pressure, V is the volume, N is the number of molecules, T is the temperature in kelvins, and k is the Boltzmann constant $\left(1.3807 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$. Solve for N

Chapter 20 Hint for Exercise 10

The work done by the external agent is the negative of the work done by the gas and is given by

$$
W_{\mathrm{ext}}=-\int_{V_{1}}^{V_{2}} p \mathrm{~d} V
$$

where p is the pressure, V_{1} is the initial volume, and V_{2} is the final volume. Now $p=n R T / V$, where n is the number of moles and T is the temperature in kelvins. Furthermore, the compression is isothermal, so T is constant. Thus

$$
W_{\mathrm{ext}}=-n R T \int_{V_{1}}^{V_{2}} \frac{\mathrm{~d} V}{V}=-n R T \ln \frac{V_{2}}{V_{1}}
$$

Chapter 20 Hint for Problem 12

The partial pressure due to gas 1 is given by $p_{1}=n_{1} R T / V$, where n_{1} is the number of moles of that gas, R is the gas constant $(8.315 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}), T$ is the temperature, and V is the volume of the container. Similarly, the partial pressure due to gas 2 is given by $p_{1}=n_{2} R T / V$. Note that T and V each have the same values in the two expressions for the partial pressures. The total pressure is $p=p_{1}+p_{2}$ and the fraction that is attributable to gas 2 is $p_{2} /\left(p_{1}+p_{2}\right)$.

Chapter 20 Hint for Problem 14

(a) Use the ideal gas law $p V=n R T$, where p is the pressure, V is the volume, n is the number of moles of gas, $R(=8.315 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K})$ is the gas constant, and T is the temperature in kelvins. Solve for n.
(b) Now solve $p V=n R T$ for T.
(c) Again solve $p V=n R T$ for T or better yet consider the ratio

$$
\frac{T_{c}}{T_{a}}=\frac{V_{c}}{V_{a}} .
$$

This was obtained by dividing the ideal gas equation for point c by the ideal gas equation for point a.
(d) The work done by the gas is the area enclosed by the graph. Since the graph is a triangle its area is half the product of the base $\left(2.0 \mathrm{~m}^{3}\right)$ and the altitude $(5.0 \mathrm{kPa}$. Since the process is a cycle, the change in the internal energy is zero and, according to the first law of thermodynamics, the work done by the gas is equal to the energy absorbed by the gas as heat.

Chapter 20 Hint for Problem 16

The air in the tube was originally at atmospheric pressure and occupied the full length L of the tube. It was compressed isothermally to a length of $L / 2$. That is, its volume was halved. The ideal gas law ($p V=n R T$) tells us that when the volume is isothermally halved the pressure is doubled. Thus the pressure after compression is $p=2 p_{0}$, where p_{0} is atmospheric pressure.
Now use what you learned in Chapter 15 about incompressible fluids, the water in this case. The pressure increases with depth: the pressure at a point in the fluid that is a distance h below the surface is $\rho g h$ greater than the pressure at the surface. Here ρ is the density of the fluid. Consider a point at the bottom of the tube. The pressure there is greater than the pressure at the interface with the air in the tube by $\rho g L / 2$. That is, it is

$$
p_{b}=p+\rho g L / 2 .
$$

On the other hand it is $\rho g h$ greater than atmospheric pressure. That is, it is

$$
p_{b}=p_{0}+\rho g h .
$$

Equate the two expressions for p_{b} and solve for h.

Chapter $20 \quad$ Hint for ExERCISE 22

(a) Evaluate

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}}
$$

where M is the molar mass of $\mathrm{N}_{2}(14 \mathrm{~g} / \mathrm{mol})$. Be sure to change the temperature value to the Kelvin scale.
(b) and (c) Solve

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}}
$$

for T.

Chapter $20 \quad$ Hint for Problem 24

(a) Since the total mass of the gas is $n M$, where n is the number of moles and M is the molar mass, the density is given by $\rho=n M / V$, where V is the volume. The pressure is given by

$$
p=\frac{1}{3} \rho v_{\mathrm{rms}}^{2} .
$$

Solve for $v_{\text {rms }}$. Recall that $1.00 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}$.
(b) The average kinetic energy per mole is given by $3 R T / 2$ and by $M v_{\mathrm{rms}}^{2} / 2$. Equate these two expressions to obtain

$$
M=\frac{3 R T}{v_{\mathrm{rms}}^{2}} .
$$

Evaluate this expression.

Chapter $20 \quad$ Hint for Problem 28

(a) Use $\rho=n M / V$ to obtain $n=\rho V / M$. Substitute this expression for n in the ideal gas law $p V=n R T$.
(b) Substitute $R=N_{A} k$ into $p V=n R T$, then replace $N_{A} n$ with N.

Chapter 20 Hint for Problem 34

Accosting to Eq. 20-25 the mean free path of a molecule in a gas is given by

$$
\lambda=\frac{1}{\sqrt{2} \pi d^{2} N / V}
$$

where d is the diameter of the molecule and N / V is the number of molecules per unit volume. (a) Assume both argon and nitrogen gases obey the ideal gas law ($p V=N k T$, where p is the pressure, k is the Boltzmann constant, and T is the temperature). Since the two gases are at the same pressure and are at the same volume, N / V is the same for them. This means that

$$
\frac{\lambda_{A}}{\lambda_{N}}=\frac{d_{N}^{2}}{d_{A}^{2}},
$$

where The subscript A refers to argon and the subscript N refers to nitrogen. Solve for d_{A} / d_{N}.
(b) Use the ideal gas law to show that $N / V=p / R T$ and therefore that

$$
\lambda=\frac{R T}{\sqrt{2} \pi d^{2} p} .
$$

Here p is the pressure, T is the temperature, and R is the gas constant $(8.315 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K})$. The ratio of the mean free paths for the same gas at the same temperature but two different pressures is

$$
\frac{\lambda_{1}}{\lambda_{2}}=\frac{p_{2}}{p_{1}} .
$$

(c) The ratio of the mean free paths for the same gas at the same pressure but two different temperatures is

$$
\frac{\lambda_{1}}{\lambda_{2}}=\frac{T_{1}}{T_{2}} .
$$

Don't forget that the temperature must be in kelvins.

CHAPTER 20 Hint for Problem 42

According to Eqs. 20-31 and 20-34 the average speed $v_{\text {avg }}$ and rms speed v_{rms} of a gas of molecules with molar mass M, at temperature T, are

$$
v_{\mathrm{avg}}=\sqrt{\frac{8 R T}{\pi M}}
$$

and

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}}
$$

where R is the gas constant $(8.315 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K})$. Set the expression for the average speed of the molecules in gas 2 equal to twice the rms speed of the molecules in gas 1 , then solve for the mass ratio. The ratio of the molar masses is the same as the ratio of the atomic masses.

Chapter 20 Hint for Exercise 44

Take the internal energy to be 0 at temperature $T=0 \mathrm{~K}$. Then, the internal energy at any temperature is given by

$$
E_{\mathrm{int}}=n C_{V} T
$$

where C_{V} is the molar specific heat for a constant volume process. For an ideal monatomic gas $C_{V}=\frac{3}{2} R$.

Chapter 20 Hint for Problem 46

(a) Use the first law of thermodynamics

$$
\Delta E_{\mathrm{int}}=Q-W,
$$

where $\Delta E_{\text {int }}$ is the internal energy, W is the work done by the gas, and Q is the energy taken in by the gas in the form of heat. Since the pressure is constant the work W done by the gas is $p \Delta V$. Since the volume increases W is positive.
(b) Since $p V=n R T$ the change in volume and change in temperature are related by $p \Delta V=$ $n R \Delta T$, so

$$
\Delta T=\frac{p}{n R} \Delta V
$$

The molar specific heat is determined by

$$
C_{p}=\frac{Q}{n \Delta T}=\frac{R}{p} \frac{Q}{\Delta V} .
$$

(c) Use

$$
C_{V}=\frac{\Delta E_{\mathrm{int}}}{n \Delta T}=\frac{R}{p} \frac{\Delta E_{\mathrm{int}}}{\Delta V}
$$

Chapter 20 Hint for Problem 48

(a) The change in the internal energy of an ideal gas during a process is given by

$$
\Delta E_{\mathrm{int}}=n C_{V} \Delta T
$$

where n is the number of moles, C_{V} is the molar specific heat, and ΔT is the change in temperature. The molar specific heat of an ideal diatomic gas is $C_{V}=(5 / 2) R$, where R $(=8.315 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K})$ is the gas constant. You need to find the temperatures at points a and c. Solve the ideal gas law $p_{a} V_{a}=n R T_{a}$ for T_{a} and the ideal gas law $p_{c} V_{c}=n R T_{c}$ for T_{c}.
(b) Use the first law of thermodynamics:

$$
\Delta E_{\mathrm{int}}=Q-W,
$$

where Q is the energy taken in by the gas in the form of heat and W is the work done by the gas. You can calculate W and solve the first law equation for Q. The work done by the gas is given by

$$
W=\int_{V_{a}}^{V_{c}} p \mathrm{~d} V
$$

You might use the graph to find the pressure p as a function of the volume V. It is a linear so you can write $p=A+B V$, where A and B are constants. Choose the constants so $p=5.0 \mathrm{kPa}$ when $V=2.0 \mathrm{~m}^{3}$ and $p=2.0 \mathrm{kPa}$ when $V=4.0 \mathrm{~m}^{3}$. Then substitute the function into the integrand and evaluate the integral. The change in the internal energy is the same as for the diagonal path since the internal energy is a state function.

Alternatively, you might recognize that the integral for the work is the area under the line from a to c. This area can be divided into two pieces: a triangle, whose area is half the product of its base and altitude, and a rectangle, whose area is the product of two perpendicular sides.
(c) Again use the first law of thermodynamics. The gas does work only during the portion of the process from a to b and this work is $W=p_{a}\left(V_{b}-V_{a}\right)$.

CHAPTER 20 HINT FOR EXERCISE 52

(a) According to Table 20-1 of the text the molar mass of oxygen is $M=32.0 \mathrm{~g} / \mathrm{mol}$. If m is the mass of the sample, then the number of moles present is $n=m / M$.
(b) Use

$$
Q=n C_{p} \Delta T .
$$

Since the molecules are diatomic $C_{p}=C_{V}+R=(5 / 2) R+R=7 R / 2$.
(c) The change in the internal energy is given by

$$
\Delta E_{\mathrm{int}}=n C_{V} \Delta T
$$

where $C_{V}=5 R / 2$ is the molar heat capacity for a constant volume process. The fraction of the energy transferred as heat that is used to increase the internal energy is given by

$$
f=\frac{\Delta E_{\mathrm{int}}}{Q}
$$

Chapter 20 Hint for Exercise 54

(a) For an adiabatic change in volume of an ideal gas from volume V_{1} to volume V_{2}

$$
p_{1} V_{1}^{\gamma}=p_{2} V_{2}^{\gamma},
$$

where p_{1} is the pressure when the volume is V_{1} and p_{2} is the pressure when the volume is V_{2}. Let $p_{1}=1.0 \mathrm{~atm}$ and $v_{2}=V_{1} / 2$, then solve for p_{2}. The ideal gas law tells us that $p_{1} V_{1}=n R T_{1}$ and $p_{2} V_{2}=n R T_{2}$, where T_{1} is the temperature when the volume is V_{1} and T_{2} is the temperature when the volume is V_{2}. Both temperatures are in kelvins. Use the first equation to eliminate n from the second and obtain

$$
T_{2}=\frac{p_{2} V_{2}}{p_{1} V_{1}} T_{1}
$$

(b) Let V_{3} be the final volume, P_{3} be the final pressure, and T_{3} be the final temperature. Then $p_{3} V_{3}=n R T_{3}$. Similarly, $p_{2} V_{2}=n R T_{2}$. Since $p_{3}=p_{2}$, these equations lead to $V_{3} / T_{3}=V_{2} / T_{2}$. Solve for V_{3}.

Chapter 20 Hint for Problem 60

(a) Let p_{0}, V_{0}, and T_{0} be the initial pressure, volume, and temperature, respectively. Let p_{1}, V_{1}, and T_{1} be the final pressure, volume, and temperature respectively. The work done by the gas and the energy input to it as heat are both zero during the process. This means the internal energy does not change and, since the internal energy of an ideal gas depends only on the temperature, the temperature does not change. Thus $T_{1}=T_{0}$. According to the ideal gas law $p_{1} V_{1}=n R T_{1}$ and $p_{0} V_{0}=n R T_{0}$. Solve these equations for T_{1} and T_{0}, then equate the two expression to each other and solve for p_{1}. You should get $p_{1}=p_{0} V_{0} / V_{1}$. Set $V_{1}=3.00 V_{0}$.
(b) Let p_{2} and V_{2} be the final pressure and volume. The process is adiabatic, so you can use the relationship

$$
p_{1} V_{1}^{\gamma}=p_{2} V_{2}^{\gamma} .
$$

Substitute $V_{2}=V_{1} / 3.00, p_{2}=(3.00)^{1 / 3} p_{0}$, and $p_{1}=. p_{0} / 3$. Solve for γ. Recall that $\gamma=5 / 3$ for a monatomic ideal gas, $\gamma=7 / 5$ for a diatomic ideal gas, and $\gamma=4 / 3$ for a polyatomic ideal gas.
(c) The average kinetic energy per molecule is proportional to the temperature in kelvins. Use the ideal gas law to show that $T_{2} / T_{0}=p_{2} / p_{0}$. Thus $K_{2} / K_{0}=p_{2} / p_{0}$.

Chapter 20 Hint for Problem 63

(a) For an adiabatic process

$$
p_{1} V_{1}^{\gamma}=p_{2} V_{2}^{\gamma} .
$$

The solution for γ is

$$
\gamma=\frac{\ln \left(p_{1} / p_{2}\right)}{\ln \left(V_{2} / V_{1}\right)}
$$

Evaluate this expression and compare your result with 1.67 (monatomic), 1.40 (diatomic), and 1.29 (polyatomic).
(b) Use the ideal gas law in the form

$$
\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}} .
$$

Solve for T_{2}.
(c) Use the ideal gas law in the form

$$
p_{1} V_{1}=n R T_{1} .
$$

Solve for n.
(d) The translational kinetic energy per mole is given by $\frac{3}{2} R T$. For the energy before compression substitute $T_{1}=273 \mathrm{~K}$ and for the energy after compression substitute $T_{2}=$ $2.73 \times 10^{4} \mathrm{~K}$.
(e) Since the kinetic energy is given by

$$
K=\frac{1}{2} M v_{\mathrm{rms}}^{2}
$$

the ratio of the rms speeds is the same as the ratio of the kinetic energies.
[ans: (a) $\gamma=1.67$, monatomic; (b) $2.7 \times 10^{4} \mathrm{~K}$; (c) $4.5 \times 10^{4} \mathrm{~mol} ; ~(d) 3.40 \times 10^{3} \mathrm{~J}$, $3.40 \times 10^{5} \mathrm{~J}$; (e) 0.010$]$

Chapter 20 Hint for Problem 64

For each case let p_{i}, V_{i}, and T_{i} be the initial pressure, volume, and temperature respectively and let p_{f}, V_{f}, and T_{f} be the final pressure, volume, and temperature.
(a) The process is isothermal, so $T_{f}=T_{i}$. Use the ideal gas law to show that $p_{f} V_{f}=p_{i} V_{i}$. Solve for p_{f}. The work done by the gas is

$$
W=\int_{V_{i}}^{V_{f}} p \mathrm{~d} V=n R T_{i} \int_{V_{i}}^{V_{f}} \frac{\mathrm{~d} V}{V}=n R T_{i} \ln \left(\frac{V_{f}}{V_{i}}\right)=p_{i} V_{i} \ln \left(\frac{V_{f}}{V_{i}}\right) .
$$

The ideal gas law was used to substitute for p in the integrand and in the last step it was used to substitute for $n R T_{i}$.
(b) The process is adiabatic, so $p_{i} V_{i}^{\gamma}=p_{f} V_{f}^{\gamma}$, with $\gamma=5 / 3$. Solve for p_{f}. Use the ideal gas law to find the final temperature: solve $p_{f} V_{f}=n R T_{f}$ for T_{f}. The energy taken in by the gas as heat is zero, so the work done by the gas is the negative of the change in the internal energy. Thus

$$
W=-\Delta E_{\mathrm{int}}=n C_{V} \Delta T
$$

where $C_{V}(=3 R / 2)$ is the molar specific heat. Thus $W=-(3 / 2) n R\left(T_{f}-T_{i}\right)$.
(c) This part is worked the same way as part (b) but with $\gamma=7 / 5$ and $C_{V}=(5 / 2) R$.

