Chapter 19 Hint for Exercise 2

Use

$$
T=T_{3} \frac{p}{p_{3}}
$$

where T is the temperature at the boiling point and T_{3} is the temperature at the triple point of water (273.16 K). Solve for p / p_{3}.

CHAPTER 19 HINT FOR EXERCISE 6
(a) Evaluate $T_{F}=(9 / 5) T_{C}+32^{\circ}$.
(b) Solve $T_{F}=(9 / 5) T_{C}+32^{\circ}$ for T_{C}.

Chapter 19 Hint for Problem 9

Assume a linear relationship between the Kelvin and X scales. Then

$$
T_{X}=A+B T
$$

where T_{X} is the temperature on the X scale, T is the temperature on the Kelvin scale, and A and B are constants. Since water boils at 373.15 K and freezes at 273.15 K ,

$$
-53.5=A+373.15 B
$$

and

$$
-170=A+273.15 B .
$$

Solve these equations simultaneously for A and B, then use $T_{X}=A+B T$, with $T=340 \mathrm{~K}$, to find T_{X} for the last temperature.
$\left[\right.$ ans: $\left.\quad-92.1^{\circ} \mathrm{X}\right]$

CHAPTER 19 HINT FOR EXERCISE 12

(a) First find the coefficient of linear expansion. The change in temperature from $20.000^{\circ} \mathrm{C}$ to the boiling point of water is $\Delta T=100.000^{\circ} \mathrm{C}-20.000^{\circ} \mathrm{C}=80.000^{\circ} \mathrm{C}$ and the change in length is $\Delta L=10.015 \mathrm{~cm}-10.000 \mathrm{~cm}=0.015 \mathrm{~cm}$. Solve

$$
\Delta L=L \alpha \Delta T
$$

for α. You should get $1.875 \times 10^{-5} \mathrm{~K}^{-1}$. The change in temperature from $20.000^{\circ} \mathrm{C}$ to the freezing point of water is $-20.000^{\circ} \mathrm{C}$. Use $\Delta L=L \alpha \Delta T$ to find the change in length and $L+\Delta L$ to find the new length.
(b) The change in length from its length at $20.000^{\circ} \mathrm{C}$ is $\Delta L=+0.009 \mathrm{~cm}$. Solve $\Delta L=$ $L \alpha \Delta T$, with $L=10.000 \mathrm{~cm}$, for ΔT, then use $T+\Delta T$, with $T=20.000^{\circ} \mathrm{C}$, to calculate the new temperature.

Chapter 19 Hint for Exercise 13

The change in the diameter of the hole is given by

$$
\Delta D=D_{0} \alpha \Delta T
$$

where D_{0} is the original diameter, ΔT is the change in temperature, and α is the coefficient of linear expansion for aluminum $\left(23 \times 10^{-6} \mathrm{~K}^{-1}\right)$. The new diameter is $D=D_{0}+\Delta D$.
[ans: $\quad 2.731 \mathrm{~cm}$]

Chapter 19 Hint for Problem 18

The change in the length of the rod is given by

$$
\Delta L=L_{0} \alpha \Delta T
$$

where L_{0} is its original length and α is its coefficient of linear expansion. The new length is $L=L_{0}+\Delta L$. This is the value that would be measured by the ruler if the ruler had not also expanded. Because the ruler expands the reading is less by the factor $1-\alpha_{s} \Delta T$, where α_{s} is the coefficient of linear expansion for steel. Thus, the reading on the expanded ruler is

$$
L^{\prime}=L\left(1-\alpha_{s} \Delta T\right)=\left(L_{0}+L_{0} \alpha \Delta T\right)\left(1-\alpha_{s} \Delta T\right) \approx L_{0}+L_{0}\left(\alpha-\alpha_{s}\right) \Delta T
$$

Solve for α.

Chapter 19 Hint for Problem 22

(a) The new diameter of the penny is given by $D=D_{0}(1+0.0018)$. The increase in the area is given by $\Delta A=\pi\left(D^{2}-D_{0}^{2}\right) / 4$. To two significant figures, this is $2(0.0018) \pi D_{0}^{2} / 4$ and the fractional change is

$$
\frac{\Delta A}{A}=\frac{2(0.0018) \pi D_{0}^{2}}{\pi D_{0}^{2}}=2(0.0018) .
$$

(b) The fractional change in the thickness is the same as the fractional change in the diameter.
(c) The change in the volume is $\Delta V=(A+\Delta A)(L+\Delta L)-A L$, where L is the thickness. To two significant figures, this is $\Delta V=3(0.0018) A L$.
(d) The mass of the penny does not depend on the temperature.
(e) The fractional change in a linear dimension like the diameter is given by

$$
\frac{\Delta D}{D}=\alpha \Delta T
$$

where α is the coefficient of linear expansion. Solve for α.

Chapter 19 Hint for Exercise 28

When mass m of a liquid freezes the energy Q that is extracted as heat is given by

$$
Q=m L_{F}
$$

where L_{F} is the heat of fusion $\left(333 \times 10^{3} \mathrm{~J} / \mathrm{kg}\right.$ for water $)$. Solve for m and subtract the result from 260 g .

Chapter 19 Hint for Problem 36

(a) The temperature of the water is brought from $T_{i}=20^{\circ} \mathrm{C}$ to $T_{f}=100^{\circ} \mathrm{C}$. The energy Q_{w} that is enters the water as heat during this process is

$$
Q_{w}=m_{w} c_{w}\left(T_{f}-T_{i}\right),
$$

where m_{w} is the mass of the water and c_{w} is the specific heat of water $\left(1.00 \times 10^{3} \mathrm{~J} / \mathrm{kg}\right)$. Mass m_{s} is converted to steam. The energy that enters as heat during this process is

$$
Q_{s}=m_{s} L_{V},
$$

where L_{V} is heat of vaporization of water $\left(2256 \times 10^{3} \mathrm{~J} / \mathrm{kg}\right)$. The total energy that enters the water is the sum of these two energies. You will need to convert the heat of vaporization to calories per kilogram. Use $1 \mathrm{~J}=0.2389 \mathrm{cal}$.
(b) The temperature of the copper bowl also changes from $T_{i}=20^{\circ} \mathrm{C}$ to $T_{f}=100^{\circ} \mathrm{C}$. The energy that enters it is

$$
Q_{b}=m_{b} c_{c}\left(T_{f}-T_{i}\right),
$$

where m_{b} is the mass of the bowl and c_{c} is the specific heat of copper.
(c) The total energy $\left(Q_{w}+Q_{s}+Q_{b}\right)$ that enters the water and bowl has been extracted from the copper cylinder. Its temperature decreases from some initial temperature T to $T_{f}=100^{\circ} \mathrm{C}$. Thus

$$
Q_{w}+Q_{s}+Q_{b}=m_{c} c_{c}\left(T_{i}-T_{f}\right),
$$

where m_{c} is the mass of the cylinder. Solve for T_{i}.

Chapter 19 Hint for Problem 41

Since the specific heat depends on temperature you must evaluate the integral

$$
Q=\int_{T_{i}}^{T_{f}} m c \mathrm{~d} T
$$

where T_{i} is the initial temperature and T_{f} is the final temperature. You should obtain

$$
Q=m\left[0.20\left(T_{f}-T_{i}\right)+0.07\left(T_{f}^{2}-T_{i}^{2}\right)+(0.023 / 3)\left(T_{f}^{3}-T_{i}^{3}\right)\right] .
$$

[ans: 82 cal$]$

Chapter 19 Hint for Problem 46

Let L_{F} be the heat of fusion of water $(333 \mathrm{~kJ} / \mathrm{kg})$ and let m_{i} be the original mass of the ice. The ice absorbs heat $m_{i} L_{F}$. If T is the final temperature of the water (and coffee), then the water from the ice absorbs an additional heat $m_{i} c T$, where c is the specific heat of water $(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K})$. Let m_{c} be the mass of coffee originally in the thermos. Then, the coffee gives up heat $m_{c} c\left(T-T_{c}\right)$, where T_{c} is the initial temperature of the coffee. Since no energy escapes the thermos,

$$
m_{i} L_{F}+m_{i} c T+m_{w} c\left(T-T_{c}\right)=0
$$

Solve for T, then calculate $\Delta T=T_{c}-T$. The density of water is $0.998 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ so $130 \mathrm{~cm}^{3}$ has a mass of $\left(130 \mathrm{~cm}^{3}\right)\left(1 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{cm}^{3}\right)\left(0.998 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)=0.130 \mathrm{~kg}$.

CHAPTER 19 HINT FOR EXERCISE 48

In the sense of the first law, W is the work done by the system. It is positive if the system does positive work and negative if the environment does positive work. Heat Q is positive if it represents energy entering the system and negative if it represents energy leaving the system. Use $1 \mathrm{cal}=4.186 \mathrm{~J}$ to convert to joules. Use

$$
\Delta E_{\mathrm{int}}=Q-W
$$

to calculate the change in the internal energy.

Chapter 19 Hint for Exercise 50

(a) Over the path $\mathrm{A} \rightarrow \mathrm{B}$ the work done by the system is positive (the volume increases). Since $\Delta E_{\mathrm{int}}=Q-W$ and ΔE_{int} is positive, Q must be positive.
Over the path $\mathrm{B} \rightarrow \mathrm{C}$ the work done by the system is 0 , so $\Delta E_{\mathrm{int}}=Q$.
Over the path $\mathrm{C} \rightarrow \mathrm{A}$ the work done by the system is negative (the volume decreases). Over the entire cycle the change in the internal energy is 0 . Since it is positive over the other two portions of the cycle, it must be negative over this portion.

Over the entire cycle $Q=W$. Now, the area under the curve $\mathrm{A} \rightarrow \mathrm{B}$ is smaller than the area under the curve $\mathrm{C} \rightarrow \mathrm{A}$ so the total work done by the system over the cycle is negative.
(b) The work done is the negative of the area of the triangle, or $\frac{1}{2} \Delta V \Delta p$.

Chapter 19 Hint for Exercise 54

Use

$$
P_{\mathrm{cond}}=k A \frac{T_{H}-T_{C}}{L},
$$

with $P_{\text {cond }} / A=54 \mathrm{~mW} / \mathrm{m}^{2}, T_{C}=10^{\circ} \mathrm{C}, k=2.50 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$, and $L=35.0 \mathrm{~km}$. Solve for T_{H}.

CHAPTER 19 HINT FOR PROBLEM 61

Let L be the length of each rod, let A be cross-sectional area of each rod, and let ΔT be the temperature difference from one end of the combination to the other. For the arrangement of Fig. 19-40 a the heat conducted in time Δt_{1} is

$$
Q=P_{\mathrm{cond}} \Delta t_{1}=k A \frac{\Delta T}{2 L} \Delta t_{1},
$$

since the total length is $2 L$.
For the arrangement of Fig. 19-40b the heat conducted in time Δt_{2} is

$$
Q=P_{\text {cond }} \Delta t_{2}=k 2 A \frac{\Delta T}{L} \Delta t_{2}
$$

since the cross-sectional area is $2 A$. The heat is the same so

$$
k A \frac{\Delta T}{2 L} \Delta t_{1}=k 2 A \frac{\Delta T}{L} \Delta t_{2}
$$

Solve for Δt_{2}.
[ans: $\quad 0.50 \mathrm{~min}]$

CHAPTER 19 HINT FOR PROBLEM 66

Let x be the ice thickness and L be the total depth. Then, the depth of the water under the ice is $L-x$. If T_{1} is the temperature of the top surface of ice, T_{2} is the temperature of the water-ice interface, and T_{3} is the temperature at the pond bottom, then the rate of heat flow through the ice is

$$
P_{\text {cond } i}=k_{i} A \frac{T_{2}-T_{1}}{x}
$$

and the rate of heat flow through the water is

$$
P_{\text {cond } w}=k_{w} A \frac{T_{3}-T_{2}}{L-x}
$$

Here k_{i} is the thermal conductivity of ice and k_{w} is the thermal conductivity of water. At steady state the two rates of heat flow are equal, so

$$
k_{i} \frac{T_{2}-T_{1}}{x}=k_{w} \frac{T_{3}-T_{2}}{L-x} .
$$

Take $T_{2}=0.0^{\circ} \mathrm{C}$ and solve for x.

