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(a) and (b) Find an expression for the angular velocity ω as a function of time by differen-
tiating θ(t). Evaluate the expression for the two values of the time. The angular velocity in
radians per second is given by ω(t) = 4.0 − 6.0t + 3.0t2.

(c) Use the definition of the average angular acceleration:

αavg =
ωf − ωi

∆t
,

where ωi is the angular velocity at the beginning of the interval and ωf is the angular velocity
at the end..

(d) and (e) Differentiate ω(t) to obtain an expression for the angular acceleration as a
function of time. Evaluate the expression for the two values of the time. You should get
α(t) = −6.0 + 6.0t for the angular acceleration in radians per second squared.
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(a) The minimum speed will just allow the arrow to travel its own length in the time the
wheel turns through one-eighth of a revolution. This time is given by

t =
θ

ω
,

where θ = 1/8 rev. The minimum speed of the arrow is given by

v =
	

t
=
ω	

θ
,

where 	 is the length of the arrow.

(b) Near the rim there is more space but the spokes are moving faster than near the axle.
In fact, both the spoke speed and the arc length between spokes are proportional to the
distance from the axle.
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The angular acceleration is constant so the equations for rotation with constant angular
acceleration can be used.

(a) Use ω = ω0 + αt. Keep the angular velocities in revolutions per minute and convert 12 s
to minutes.

(b) Use θ = ω0t + 1
2αt

2.
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The wheel rotates with constant angular acceleration.

(a) The line will turn with the wheel in the positive direction until its angular velocity is
zero. Then θ is a maximum. Solve

0 = ω0 + αt

for t, then evaluate

θ = ω0t +
1
2
αt2 .

As an alternative, put ω = 0 in
ω2 − ω2

0 = 2αθ

and solve for θ.

(b) and (c) Solve

θ = ω0t +
1
2
αt2

for t. This is a quadratic equation and you should get two solutions for each value of θ.

The general solution to the quadratic equation is

t =
−ω0 ±

√
ω2

0 + 2αθ
α

.

Evaluate this expression for θ = 22 rad and for θ = −10.5 rad.

[
ans: (a) 44 rad; (b) 5.5 s, 32 s; (c) −2.1 s, 40 s

]
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The disk rotates with constant angular acceleration.

(a) Solve
ω2 − ω2

0 = 2αθ

for α. Substitute ω = 15 rev/s, ω0 = 10 rev/s, and θ = 60 rev.

(b) Solve
ω = ω0 + αt

for t. Use the value for α found in the part (a).

(c) Solve
ω = ω0 + αt

for t. Now ω = 10 rev/s and ω0 = 0. The angular acceleration has the same value as before.

(d) Use

θ = ω0t +
1
2
αt2 ,

with ω0 = 0. The time has the value found in part (c).
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(a) Differentiate θ = 0.30t2 to obtain an expression for the angular velocity in radians per
second as a function of time. Evaluate the expression for t = 5.0 s.

(b) Use v = ωr, where r is the radius of the centrifuge and ω is the answer to part (a).

(c) Differentiate the angular velocity with respect to time to find the value of the angular
acceleration, then use at = αr to find the tangential component of the acceleration.

(d) Use ar = ω2r to find the radial component of the acceleration.

[
ans: (a) 3.0 rad/s; (b) 30 m/s; (c) 6.0 m/s2; (d) 90 m/s2

]
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(a) Since the angular acceleration α is constant the angular velocity ω is given by

ω = ω0 + αt .

Solve for α and substitute ω0 = 150 rev/min, ω = 0, and t = 2.2 h. You will get the angular
acceleration in revolutions per hour-squared and you must convert to revolutions per minute-
squared. The negative result for α indicates that the direction of the angular acceleration is
opposite that of the initial angular velocity.

(b) Use

θ = ω0t +
1
2
αt2 .

Be careful to use consistent units.

(c) Use at = αr, where r is the distance from the rotation axis to the particle. Remember
that α must be in radians per second-squared. You must convert the value you found in part
(a). Use 1 rev = 2π rad and 1 min = 60 s.

(d) The radial acceleration is given by ar = ωr2, where ω must be in radians per second. You
must convert 75 rev/min. Since the radial and tangential accelerations are perpendicular to
each other, the magnitude of the net linear acceleration is a =

√
a2

r + a2
t .
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The translational kinetic energy is given by

Kcom =
1
2
mv2

com ,

where m is the mass of the molecule and vcom is the speed of its center of mass. The rotational
kinetic energy is Krot = (2/3)Kcom. It is given by

Krot =
1
2
Iω2 ,

where I is the rotational inertia of the molecule and ω is its angular speed. Solve

1
2
Iω2 = (2/3)

1
2
mv2

com

for ω.
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(a) According to Table 11–2, the rotational inertia of a thin rod that is rotating about one
end is I = (1/3)ML2, where L is the length of the rod and M is its mass. The helicopter
rotor assembly contains three such rods, so the total rotational inertia is three times the
rotational inertia of a single rod.

(b) The rotational kinetic energy is given by

K =
1
2
Itotalω

2 ,

where ω is the angular speed in radians per second. You must convert 350 rev/min. Use
1 rev = 2π rad and 1 min = 60 s.
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(a), (b), and (c) The rotational inertia of a collection of particles is given by the sum
∑

mir
2
i ,

where mi is the mass of particle i and ri is its distance from the axis of rotation. If the
axis of rotation is the x axis, then r2

i = y2
i + z2

i = y2
i . The last equality holds for the four

particles of this system because all are in the xy plane. If the axis of rotation is the y axis,
then r2

i = x2
i + z2

i = x2
i and if the axis of rotation is the z axis, then r2

i = x2
i + y2

i .

(d) Notice that
A =

∑
miy

2
i ,

B =
∑

mix
2
i ,

and the answer to part (c) is ∑
mi(x2

i + y2
i ) .
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(a) Use

K =
1
2
Iω2

to calculate the kinetic energy. Here I is the rotational inertia of the flywheel and ω is its
angular speed. According to Table 11–2 I = 1

2MR2.

(b) Use

Pavg =
∆K

∆t
,

where ∆K is the change in the kinetic energy of the flywheel in time ∆t. Since the flywheel
starts fully charged and ends at rest, ∆K is the kinetic energy found in part (a). Solve for
∆t.
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Use
τ = F	 sinφ ,

where 	 is the length of the pedal and φ is the angle between the pedal and the force. Since
the force is downward this is the same as the angle made by the pedal with the vertical.
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Use
τ = Ft	 ,

where Ft is the tangential component of the force and 	 is the distance from O to the point
of application of the force. Attach appropriate signs to the torques and sum them.

For force A the tangential component is FA cos(135◦ − 90◦), for force B the tangential
component is FB, and for force C the tangential component is FC cos(160◦ − 90◦). Forces A
and C tend to turn the body counterclockwise, so τA and τC are positive; force B tends to
turn the body clockwise, so τB is negative. Sum the torques, with their signs, to obtain the
net torque.
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Use
τnet = Iα ,

where τnet is the net torque on the cylinder, I is the rotational inertia of the cylinder, and α
is its angular acceleration. Calculate the individual torques, being careful about the signs,
then sum them to obtain τnet. Use I = 1

2MR2
2 to find the rotational inertia of the cylinder

(see Table 11–2).

You should get τ1 = 0.72 N·m (counterclockwise), τ2 = 0.48 N·m (clockwise), τ3 = 0.10 N·m
(clockwise), and τ4 = 0. You should also get I = 1.44 × 10−2 kg·m2.
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(a) Consider the system consisting of the block, the disk, and Earth. Take the potential
energy to be zero when the block is at the bottom of the 50 cm fall. Then the initial
potential energy is Ui = mgh, where h is the distance fallen and m is the mass of the block.
The initial kinetic energy is Ki = 0, since the block and disk are initially at rest. Suppose
that after the block has fallen a distance h it has speed v and the disk has angular speed ω.
Then the final kinetic energy is 1

2mv2 + 1
2Iω

2. Conservation of mechanical energy yields

mgh =
1
2
mv2 +

1
2
Iω2 ,

where I is the rotational inertia of the disk. Since the string does not slip on the disk,
v = Rω. Substitute ω = v/R into the conservation of mechanical energy equation. Also
substitute I = 1

2MR2. Solve for v. You should get

v =

√
4mgh

M + 2m
.

(b) Look at the algebraic expression you derived for v. It does not contain R.


