
EXPLICIT BOUNDS FOR SUMS OF SQUARES

JEREMY ROUSE

Abstract. For an even integer k, let r2k(n) be the number of representations of n as a sum of
2k squares. The quantity r2k(n) is approximated by the classical singular series ρ2k(n) � nk−1.
Deligne’s bound on the Fourier coefficients of Hecke eigenforms gives that r2k(n) = ρ2k(n) +

O(d(n)n
k−1
2 ). We determine the optimal implied constant in this estimate provided that either

k/2 or n is odd. The proof requires a delicate positivity argument involving Petersson inner
products.

1. Introduction and Statement of Results

In Hardy’s book on Ramanujan [11], he states the following (Chapter 9, pg. 132).

The problem of the representations of an integer n as the sum of a given number
k of integral squares is one of the most celebrated in the theory of numbers. Its
history may be traced back to Diophantus, but begins effectively with Girard’s
(or Fermat’s) theorem that a prime 4m + 1 is the sum of two squares. Almost
every arithmetician of note since Fermat has contributed to the solution of the
problem, and it has its puzzles for us still.

If n is a non-negative integer, let

rs(n) = #{(x1, x2, . . . , xs) ∈ Zs : x2
1 + x2

2 + · · ·+ x2
s = n}

be the number of representations of n as a sum of s squares.

The classical work that Hardy refers to includes the formulas of Jacobi giving the following
exact formulas. Let n be a positive integer and write n = 2αm, where m is odd. Then

r4(n) =

{
8σ1(m) if α = 0

24σ1(m) if α ≥ 1,
r8(n) =

{
16σ3(m) if α = 0

16 · 23α+3−15
7

σ3(m) if α ≥ 1.

The search for higher exact formulas (each involving more complicated arithmetic functions)
for was carried out by many mathematicians. Glaisher [9] and Rankin [20] were interested in
these formulas where the arithmetic functions involved were multiplicative.
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In a different direction, Hardy [10] and Mordell [18] applied the circle method to give an
approximation

rs(n) = ρs(n) +Rs(n)

where ρs(n) is the “singular series” and Rs(n) is an error term. Here ρs(n) can be expressed as
a divisor sum if s is even, and ρs(n) � n

s
2
−1 provided s > 4. The contribution Rs(n) is more

mysterious, and Deligne’s proof of the Weil conjectures (see [7]) implies an estimate of the form

(1) Rs(n) = O(d(n)n
s
4
− 1

2 )

provided s is even. The phenomena of exact formulas for rs(n) of the form rs(n) = ρs(n) only
occurs for small s. In [21], Rankin shows that Rs(n) is identically zero if and only if s ≤ 8.
Exact formulas of a different nature were given by Milne in [17] when s = 4n2 and s = 4n(n+1).

The problem we study is the implied constant in equation (1) above. This is a natural ques-
tion, and in [22, 14, 13], the author has studied the corresponding problem for powers of the
∆ function, p-core partitions (joint work with Byungchan Kim), and arbitrary level 1 cusp
forms (joint work with Paul Jenkins), respectively. To prove their now famous “290-theorem”
Bhargava and Hanke [4] compute this implied constant for about 6000 quadratic forms in four
variables and use this to determine precisely which integers these forms represent.

Returning to our problem, if s = 2k and k is even, we have that

ρ2k(n) =
2k(−1)k/2+1

(2k − 1)Bk

(
σk−1(n) + (−1 + (−1)k/2+1)σk−1(n/2) + (−1)k/22kσk−1(n/4)

)
,

where Bk is the kth Bernoulli number and σk−1(n) is the sum of the k − 1st powers of the
positive integer divisors of n (and is hence zero if n is not an integer). Our main result is the
following.

Theorem 1. Suppose that k is even. If either k/2 is odd or n is odd, then we have

|r2k(n)− ρ2k(n)| ≤
(

4k +
2k(−1)k/2

(2k − 1)Bk

)
d(n)n

k−1
2 .

Remark. If 2k = 4 or 2k = 8, the right hand side is zero, and we recover the exact formulas of

Jacobi. For arbitrary even k, we have r2k(1) = 4k and ρ2k(1) = 2k(−1)k/2+1

(2k−1)Bk
. Thus, the inequality

above becomes an equality when n = 1. This shows that the implied constant

4k +
2k(−1)k/2

(2k − 1)Bk

in (1) is best possible. The error term is smaller than the main term provided n� k2.

Our approach to proving Theorem 1 is as follows. If

θ(z) = 1 + 2
∞∑
n=1

qn
2

, q = e2πiz
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is the classical Jacobi theta function, then

θ2k(z) =
∞∑
n=0

r2k(n)qn

is a modular form of weight k on Γ0(4). If k is even, we can decompose

(2) θ2k(z) = a1Ek(z) + a2Ek(2z) + a3Ek(4z) +
∑
i

cigi(z) +
∑
i

digi(2z) +
∑
i

eigi(4z)

where

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

is the classical level 1 Eisenstein series, and the gi(z) are normalized newforms of level 1, 2, or
4. We prove the following.

Theorem 2. Assume the notation above. Then for all i, ci ≥ 0.

Theorem 2 allows us to read off∑
i

|ci| =
∑
i

ci = 4k +
2k(−1)k/2

(2k − 1)Bk

from the coefficient of q on both sides of (2), using that a1 = (−1)k/2

(2k−1)Bk
.

To prove Theorem 2 we use properties of the Petersson inner product on Mk(Γ0(4)) (see Sec-
tion 2 for precise definitions). If gi(z) is a newform of level 4, then gi(z) is orthogonal to every
other term in the expansion (2). It follows that

〈θ2k, gi〉 = ci〈gi, gi〉.

It suffices to prove that 〈θ2k, gi〉 ≥ 0. This Petersson inner product consists of a contribution
from each of the three cusps of Γ0(4): ∞, 0, and 1/2. The contribution from ∞ is

2

(4π)k

∞∑
n=1

r2k(n)a(n)

nk−1

∫ ∞
4πn

uk−2e−u du.

Here gi(z) =
∑∞

n=1 a(n)qn. Our approach is to show that the main term in the above sum
comes from n = 1. If n is fixed, r2k(n) is a polynomial of degree 2k in n. We compute these
polynomials explicitly, and use this to the bound the terms when 2 ≤ n ≤ 2500. Next, we use a
simple induction bound on r2k(n) to show that the terms with 2500 ≤ n ≤ k

2π
log(k) are small

enough. Finally, we use the exponential decay of
∫∞

4πn
uk−2e−u du when n ≥ k

2π
log(k).

The cusp at zero behaves in an essentially identical way to the cusp at∞, and the contribution
from the cusp at 1/2 is very small, since θ(z) vanishes there.
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Remark. This result can be thought of as a refined form of the circle method. The Eisenstein
series is the contribution of the major arcs, while the Deligne’s result, and the bounds we give
on the constants ci can be thought of as explicit, uniform minor arc estimates. Further, it is
plausible that the Fourier coefficients of distinct newforms are independent (an assertion that
could be justified under the assumption of the holomorphy of certain Rankin-Selberg convolu-
tions). Combining this with the recent proof of the Sato-Tate conjecture (see [3]) suggests that
for any ε > 0, there are infinitely many primes p so that

|r2k(p)− ρ2k(p)| >
(

4k +
2k(−1)k/2

(2k − 1)Bk

− ε
)
d(p)p

k−1
2 .

Remark. The proof gives more detailed information about the constants ci in (2). In particular,
if gi(z) is a newform of level 4 and k ≡ 2 (mod 4), then

ci = 16k · (k − 2)!

(4π)k〈gi, gi〉
(1 +O(αk))

where α ≈ 0.918. If k ≡ 0 (mod 4), then ci = 0. Similar, but more complicated results are true
for the constants ci associated with level 1 and level 2 newforms.

An outline of the paper is as follows. In Section 2 we give precise definitions and review
necessary background information. In Section 3 we prove a number of auxiliary results that
will be used in the proof of Theorem 2. In Section 4, we prove Theorem 2 and use this to
deduce Theorem 1. Finally, in Section 5, we address other values of k and n.

Acknowledgements. The author used Magma [5] version 2.17 for computations.

2. Background

In this section we give definitions and review necessary background. For N ≥ 1, let Mk(Γ0(N))

denote the C-vector space of modular forms of weight k on Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : N |c

}
.

Let Sk(Γ0(N)) denote the subspace of cusp forms.

If f is a modular form of weight k, and α =

[
a b
c d

]
∈ GL2(Q) and has positive determinant,

define the usual slash operator by

f |α = (ad− bc)k/2(cz + d)−kf

(
az + b

cz + d

)
.

For a positive integer d, define the operator V (d) by f(z)|V (d) = f(dz). It is well-known
(see [12], pg. 107 for a proof) that V (d) maps Mk(Γ0(N)) to Mk(Γ0(dN)) and Sk(Γ0(N)) to
Sk(Γ0(dN)). For a positive integer d, define the operator U(d) by

∞∑
n=0

a(n)qn|U(d) =
∞∑
n=0

a(dn)qn.
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If d|N , then U(d) maps Mk(Γ0(N)) to itself and Sk(Γ0(N)) to itself. If p is a prime with p - N ,
define the usual Hecke operator T (p) by T (p) = U(p) + pk−1V (p).

If f, g ∈Mk(Γ0(N)) and at least one of f or g is a cusp form, let

〈f, g〉 =
3

π[SL2(Z) : Γ0(N)]

∫∫
H/Γ0(N)

f(x+ iy)g(x+ iy)yk
dx dy

y2

denote the usual Petersson inner product. If p - N , then the Hecke operators T (p), acting
on Sk(Γ0(N)), are self-adjoint with respect to the Petersson inner product. Moreover, if α ∈
GL2(Q) and has positive determinant, then 〈f |α, g|α〉 = 〈f, g〉.
Let Snew

k (Γ0(N)) denote the orthogonal complement under this inner product of the space
spanned by all forms

f(z)|V (d), where f(z) ∈ Sk(Γ0(M)),

and we have M |N , M < N , and d is a divisor of N/M . A newform of level N is a form

f(z) =
∞∑
n=1

a(n)qn ∈ Snew
k (Γ0(N))

that is a simultaneous eigenform of the Hecke operators T (p), normalized so that a(1) = 1. We
have the Deligne bound

|a(n)| ≤ d(n)n
k−1
2

where d(n) is the number of divisors of n (for a detailed proof of this inequality, see the new
book by Brian Conrad [6]). A newform f(z) of level N is also an eigenform of the Atkin-

Lehner operator WN =

[
0 −1
N 0

]
. This operator commutes with the Hecke operators T (p) for

primes p - N . One has more information about the coefficient a(p) if p|N . If N = p, then

a(p) = −λp k2−1, where λ is the eigenvalue of f under WN . If p2|N , then a(p) = 0 (see [2],
Theorem 3).

The multiplicity-one theorem states that the joint eigenspaces of all T (p) (with p - N) in
Snew
k (Γ0(N)) are one-dimensional. It follows from this, and the self-adjointness of the Hecke

operators, that if f1 and f2 are two distinct newforms, then 〈f1, f2〉 = 0. It is known (see
Section 5.11 of [8]) that the Eisenstein series Ek(z) (and Ek(z)|V (d)) are orthogonal to cusp
forms under the Petersson inner product.

Finally, let η(z) denote as usual the Dedekind eta function

η(z) = q1/24

∞∏
n=1

(1− qn), q = e2πiz.
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We have the following well-known identities:

θ(z) =
η5(2z)

η2(z)η2(4z)

η8(4z)

η4(2z)
=
∞∑
n=0

σ(2n+ 1)q2n+1

(2z + 1)−2θ4

(
z

2z + 1

)
= 16

η8(4z)

η4(2z)

(see the exercises on page 145 of [15], solutions are on page 234).

3. Preliminary results

In this section we prove three lemmas that will be used in the proof of the main results. Our
first lemma proves some simple bounds on rs(n).

Lemma 3. (1) Suppose that n is a non-negative integer. There are non-negative constants
ci,n (0 ≤ i ≤ n) so that

rs(n) =
n∑
i=0

ci,n

(
s

i

)
for all s ≥ 0.

(2) If n is fixed, r2s(n)

n
s−1
2

is a decreasing function of s, provided 2s ≥ n+ n
4√n−1

.

(3) If n is a positive integer and s ≥ 6, then

rs(n) ≤ 3(4.11)s

25
√
s!

(n+ s)
s
2
−1.

Proof. We prove the first statement by strong induction on n. For n = 0, we have rs(0) = 1 =
1 ·
(
s
0

)
. Thus, c0,0 = 1 and the result holds.

Assume the result is true for all m < n. Let t be a positive integer with t ≤ s. Then

rt(n)− rt−1(n) = 2

b
√
nc∑

r=1

rt−1(n− r2)

= 2

b
√
nc∑

r=1

n−r2∑
i=0

ci,n−r2

(
t− 1

i

)
.
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Summing both sides over all t, 1 ≤ t ≤ s and using that
∑s

t=1

(
t−1
i

)
=
(
s
i+1

)
gives

rs(n) =

b
√
nc∑

r=1

n−r2∑
i=0

2ci,n−r2

(
s

i+ 1

)

= 2
n∑
i=1

b√n−ic∑
r=1

ci−1,n−r2

(s
i

)
.

Since the ci−1,n−r2 are non-negative, by the induction hypothesis, it follows that their sum is
non-negative, and this proves that the result is true for n.

To prove the second statement, it suffices to prove that each term in the expression

r2s(n)

n
s−1
2

=
n∑
i=0

ci,n

(
2s
i

)
n
s−1
2

is a decreasing function of s. Let f(s) =
(

2s
i

)
· n(1−s)/2. Then,

f(s+ 1)

f(s)
=

1√
n
· (2s+ 2)(2s+ 1)

(2s+ 2− i)(2s+ 1− i)

≤ 1√
n

(2s+ 2)(2s+ 1)

(2s+ 2− n)(2s+ 1− n)

<
1√
n

(
1 +

n

2s− n

)2

.

This is a decreasing function of s, and if we take s = n+ n
4√n−1

, then 2s− n = n
4√n−1

and so

1√
n

(
1 +

n

2s− n

)2

=
1√
n

(
1 + ( 4

√
n− 1)

)2
= 1.

This proves that f(s+ 1) < f(s), as desired.

We prove the third statement by induction on s. Our base case is s = 6 and in this case, we
use the exact formula

r6(n) =
∑
d|n

d2 (−4χ−1(d) + 16χ−1(n/d)) ,

where

χ−1(n) =


1 if n ≡ 1 (mod 4)

−1 if n ≡ 3 (mod 4)

0 if n is even.

We rewrite this as

r6(n) = n2
∑
d|n

16χ−1(n/d)− 4χ−1(d)

(n/d)2
.
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If n is even, then r6(n)/n2 ≤ 8ζ(2) ≤ 13.2. On the other hand if n is odd, then 16χ−1(n/d)−
4χ−1(d) is negative if n/d ≡ 3 (mod 4) and 16χ−1(n/d) − 4χ−1(d) ≤ 20 if n/d ≡ 1 (mod 4).
Thus,

r6(n)

n2
≤ 20

∑
d|n

d≡1 (mod 4)

1

d2
≤ 20

∞∑
n=0

1

(4n+ 1)2
.

One can show that the right hand side above is about 21.4966613 ≤ 6449
300

. We denote by Cs a

constant so that rs(n) ≤ Cs(n+ s)
s
2
−1, and we take C6 = 6449

300
. This proves the base case.

Assume now that s ≥ 6. We have

rs+1(n) = rs(n) + 2

b
√
nc∑

m=1

rs(n−m2)

≤ Cs(n+ s)
s
2
−1 + 2Cs

b
√
nc∑

m=1

(n+ s−m2)
s
2
−1

≤ Cs(n+ s)
s
2
−1 + 2Cs

∫ √n+s+1

0

(n+ s+ 1− x2)
s
2
−1 dx

≤ Cs(n+ s)
s
2
−1 + 2Cs(n+ s+ 1)

s+1
2
−1

∫ 1

0

(1− u2)
s
2
−1 du.

We have
(1− u2)

s
2
−1 = e(

s
2
−1) log(1−u2) ≤ e−(s/2−1)u2 .

Thus

2

∫ 1

0

(1− u2)
s
2
−1 du ≤ 2

∫ ∞
0

e−(s/2−1)u2 du =

√
π

s
2
− 1

,

and

rs+1(n) ≤ Cs(n+ s)
s
2
−1 + Cs(n+ s+ 1)

s+1
2
−1

[√
2π

s− 2

]

≤ Cs(n+ s+ 1)
s+1
2
−1

[√
2π

s− 2
+

(n+ s)(s/2)−1

(n+ s+ 1)
s+1
2
−1

]
.

Note that the second term inside the brackets above is a decreasing function of n and is relevant
only for n ≥ 1. It follows that

rs+1(n) ≤ Cs(n+ s+ 1)
s+1
2
−1 · 1√

s+ 1

[
√

2π

√
s+ 1

s− 2
+

(
s+ 1

s+ 2

)s/2−1
]

≤ Cs · 4.11√
s+ 1

(n+ s+ 1)
s+1
2
−1.
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Hence, we may take Cs+1 = 4.11√
s+1

Cs and so

Cs =
6449

300
· 4.11s−6√

s!/6!
≤ 3(4.11)s

25
√
s!
.

�

Next, we use Deligne’s bound on the Fourier coefficients of a newform to bound its value.

Lemma 4. Suppose that k ≥ 7, y ≥ 1
2π

, and g(z) =
∑∞

n=1 a(n)qn with |a(n)| ≤ d(n)n
k−1
2 .

Then

|g(x+ iy)| ≤ 1

(2πy)
k+1
2

Γ

(
k + 1

2

)[
log

(
k + 1

2

)
+ γ + 1

]
,

where γ is Euler’s constant.

Proof. Since the nth Fourier coefficient of g(z) is bounded by d(n)n
k−1
2 , we have that

|g(x+ iy)| ≤
∞∑
n=1

d(n)n
k−1
2 e−2πny.

If D(x) =
∑

n≤x d(n), then D(x) ≤ x log(x) + γx + 1 ≤ x log(x) + (γ + 1)x. By partial
summation, we have

∞∑
n=1

d(n)n
k−1
2 e−2πny =

∫ ∞
1

D(x)

[
2πyx

k−1
2 −

(
k − 1

2

)
x
k−3
2

]
e−2πxy dx

≤ 2πy

∫ ∞
k−1
4πy

(log(x) + (γ + 1))x
k+1
2 e−2πxy dx.

Now, we set u = 2πxy, du = 2πy dx. We get

2πy

∫ ∞
k−1
2

(
log

(
u

2πy

)
+ (γ + 1)

)(
u

2πy

) k+1
2

e−u
du

2πy

=
1

(2πy)
k+1
2

∫ ∞
k−1
2

(log(u)− log(2πy) + γ + 1)u
k+1
2 e−u du.

Since y ≥ 1
2π

, log(2πy) > 0 and so we neglect the term involving it. We get

1

(2πy)
k+1
2

[∫ ∞
k−1
2

log(u)u
k+1
2 e−u du+ (γ + 1)

∫ ∞
k−1
2

u
k+1
2 e−u du

]
.

If we extend the integrals down to zero, then the negative contribution of∫ 1

0
log(u)u

k+1
2 e−u du is cancelled by that of [1.5, 2] for k ≥ 7. Thus, we get the bound

|g(z)| ≤ 1

(2πy)
k+1
2

Γ

(
k + 1

2

)[
ψ

(
k + 1

2

)
+ γ + 1

]
,
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where Γ′(z) =
∫∞

0
log(u)uz−1e−u du and ψ(z) = ψ(z) = Γ′(z)

Γ(z)
. The formula (see equation 6.3.21

on page 258 of [1])

ψ(z) = log(z)− 1

2z
−
∫ ∞

0

2t dt

(z2 + t2)(e2πt − 1)

shows that ψ(z) ≤ log(z). Thus, we obtain the bound

1

(2πy)
k+1
2

Γ

(
k + 1

2

)[
log

(
k + 1

2

)
+ γ + 1

]
.

�

Finally, we will need to understand Petersson inner products of newforms f with their images
under V (d). This is the subject of the next result.

Lemma 5. Suppose that f(z) =
∑∞

n=1 a(n)qn ∈ Snew
k (Γ0(N)) is a newform. If p - N , then

〈f, f |V (p)〉 =
a(p)

pk−1(p+ 1)
〈f, f〉.

Note that the assumption that f has trivial character implies that the Fourier coefficients of f
are real. This fact will be used frequently in what follows.

Proof. Rankin proved in [19] that if f =
∑
a(n)qn and g =

∑
b(n)qn are cusp forms of weight

k, then ∑
n≤x

a(n)b(n)

nk−1
=

(4π)k

(k − 1)!
〈f, g〉x+O(x3/5).

We will use this formula to prove the results above. We start by letting c = (4π)k

(k−1)!
, and p be a

prime number with p - N . Then,

〈f, f |V (p)〉 = lim
x→∞

1

c
· 1

x

∑
n≤x

a(n)a(n/p)

nk−1

= lim
x→∞

1

c
· 1

x

∑
pn≤x

a(pn)a(n)

(pn)k−1

= lim
x→∞

1

c
· 1

pk
· 1
x
p

∑
n≤x

p

a(pn)a(n)

nk−1

=
1

pk
〈f, f |U(p)〉.
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Now, a(p)f = f |T (p) = f |U(p) + pk−1f |V (p). It follows that

a(p)〈f, f〉 = 〈f, f |T (p)〉 = 〈f, f |U(p)〉+ pk−1〈f, f |V (p)〉
= pk〈f, f |V (p)〉+ pk−1〈f, f |V (p)〉
= pk−1(p+ 1)〈f, f |V (p)〉.

Thus,

〈f, f |V (p)〉 =
a(p)

pk−1(p+ 1)
〈f, f〉.

�

4. Proof of Theorem 1 and Theorem 2

In this section, we will prove the main results. We will first prove Theorem 2 and then deduce
Theorem 1 from it.

Proof of Theorem 2. First, for each newform g of level 1, 2, or 4, we will find a form g̃ with the
property that the coefficient of g in the representation of θ2k is positive if and only if 〈θ2k, g̃〉 > 0.
Each g̃ will be an eigenform of Tp for all odd primes p, and will also be an eigenform of W4

with the same eigenvalue as that of θ2k.

Recall the decomposition

θ2k(z) = a1Ek(z) + a2Ek(2z) + a3Ek(4z) +
∑
i

cigi(z) +
∑
i

digi(2z) +
∑
i

eigi(4z),

where the gi are newforms of level 1, 2, or 4, and the ci, di, ei ∈ R. If V is an eigenspace for all

Tn (with n odd), then V is also stable under W4. Since θ2k|W4 = (−1)
k
2 θ2k, it follows that the

projection of θ2k onto V must also have eigenvalue (−1)
k
2 under W4.

If V is an eigenspace coming from a newform gi of level 4, then dimV = 1. If ci 6= 0, then

gi|W4 = (−1)
k
2 . In this case, we have 〈θ2k, g〉 = 〈cigi, gi〉 = ci〈gi, gi〉 and thus ci > 0 if and only

if 〈θ2k, gi〉 > 0, and so we set g̃i = gi. Part (i) of Theorem 7 of [2] shows that for any newform
of level 4, gi|W4 = −1, and hence ci = 0 if k ≡ 0 (mod 4).

If V is an eigenspace coming from a newform gi of level 2, then dimV = 2. This vector
space decomposes into one-dimensional plus and minus eigenspaces under the action of W4. It

follows that the projection of θ2k onto V is ci(gi+(−2)
k
2λgi|V (2)), where λ is the Atkin-Lehner

eigenvalue of gi. Thus, we set g̃i = gi + (−2)
k
2λgi|V (2). This form will be orthogonal to any

element in the opposite W4 eigenspace, since W4 is an isometry with respect to the Petersson
inner product. It follows that ci > 0 if and only if 〈θ2k, g̃i〉 > 0.
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If V is an eigenspace coming from a newform gi of level 1, then dimV = 3 and

gi|W4 = 2kgi|V (4)

gi|V (2)|W4 = gi|V (2)

gi|V (4)|W4 = 2−kgi.

We have that V = V + ⊕ V −, where V + and V − are the plus and minus eigenspaces for W4.
Then dimV + = 2 and it is spanned by gi + 2kgi|V (4) and gi|V (2). Also dimV − = 1 and it
is spanned by gi − 2kgi|V (4). If k ≡ 0 (mod 4), then the Atkin-Lehner sign is +1. If k ≡ 2
(mod 4), the Atkin-Lehner sign is −1.

When k ≡ 2 (mod 4), we set g̃i = gi− 2kgi|V (4). This form satisfies g̃i|W4 = −g̃i, and is again
orthogonal to the form spanning the plus eigenspace for W4.

When k ≡ 0 (mod 4), we set g̃i = gi− 4
3
a(2)gi|V (2) +2kgi|V (4). This form satisfies g̃i|W4 = g̃i,

and is hence orthogonal to gi − 2kgi|V (4). By Lemma 5 it is orthogonal to gi|V (2).

We have

〈θ2k, g̃i〉 =
1

2π

∫∫
H/Γ0(4)

θ2k(z)g̃i(z)yk
dx dy

y2

=
1

2π

6∑
j=1

∫ 1/2

−1/2

∫ ∞
√

1−x2

(
θ2k|kγj

)
(x+ iy)g̃i|kγj(x+ iy)yk−2 dy dx.

Here, the matrices

γ1 =

[
1 0
0 1

]
, γ2 =

[
0 −1
1 0

]
, γ3 =

[
0 −1
1 1

]
, γ4 =

[
0 −1
1 2

]
, γ5 =

[
0 −1
1 3

]
, γ6 =

[
1 0
2 1

]
are a set of representatives for the right cosets of Γ0(4) in SL2(Z).

Term 1: This is the contribution from the cusp at infinity. In particular, it is the j = 1 term
in the above sum. We split this term into two parts: {x + iy : −1/2 ≤ x ≤ 1/2, y ≥ 1}, and
{x+ iy : −1/2 ≤ x ≤ 1/2,

√
1− x2 ≤ y ≤ 1}.

Write

g̃i(z) =
∞∑
n=1

a(n)qn.

Applying the Deligne bound to each of the various possible forms of g̃i, we see that in all cases

|a(n)| ≤ 17
3
d(n)n

k−1
2 .

The first part is

1

2π

∫ ∞
1

∫ 1/2

−1/2

(
∞∑
m=0

r2k(m)e−2πmye2πimx

)(
∞∑
n=1

a(n)e−2πnye−2πinx

)
yk−2 dx dy.
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Since the Fourier series representations converge uniformly on compact subsets of these regions,
we can invert the summations and the integrals and obtain

1

2π

∞∑
m=0

∞∑
n=1

r2k(m)a(n)

∫ 1/2

−1/2

∫ ∞
1

yk−2e−2π(m+n)ye2πi(m−n)x dy dx.

The integral over −1/2 ≤ x ≤ 1/2 is zero unless m = n, in which case it is 1. We set u = 4πny,
du = 4πn dy and this gives

2

(4π)k

∞∑
n=1

r2k(n)a(n)

nk−1

∫ ∞
4πn

uk−2e−u du.

We now split this sum into several ranges. The main contribution comes from n = 1. We have
a(1) = 1 and r2k(1) = 4k. This term is

8k

(4π)k

∫ ∞
4π

uk−2e−u du =
8k

(4π)k

[∫ ∞
0

uk−2e−u du−
∫ 4π

0

uk−2e−u du

]
≥ 8k

(4π)k
[
(k − 2)!− (4π)k−1e−4π

]
,

for k ≥ 15, since if k > 4π + 2, uk−2e−u is increasing on [0, 4π].

The second range is 2 ≤ n ≤ 2500. Here we explicitly compute the polynomials r2k(n) (using

the algorithm in the proof of part 1 of Lemma 3). Part 2 of Lemma 3 shows that r2k(n)

n
k−1
2

is a

decreasing function of k, provided k ≥ 1456.

The third range is 2500 ≤ n ≤ k
2π

log(2k). In this range, we use the bound from part 3 of
Lemma 3, the Deligne bound, d(n) ≤ 2

√
n, and we obtain that∣∣∣∣∣r2k(n)a(n)

nk−1

∣∣∣∣∣ ≤ 34(4.11)2k

25
√

(2k)!
·
√
n · (n+ 2k)k−1

n
k−1
2

≤ 34

25

(4.11)2k√
(2k)!

·
√

k

2π
log(2k) ·

(√
n+

2k√
n

)k−1

.

The function f(x) =
(
x+ 2k

x

)k−1
is decreasing for x <

√
2k and increasing after that. We have

that f(50) = f(2k
50

) and 2k
50
≥
√

k
2π

log(2k) if k ≥ 724. Thus, we have the bound

68

25

(4.11)2k

(4π)k
√

(2k)!
· k3/2

(2π)3/2
log3/2(2k) ·

(
50 +

2k

50

)k−1

· (k − 2)!,

valid provided k ≥ 724. For k ≤ 724, we use the larger of the values of f at x = 50 and

x =
√

k
2π

log(2k).
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The fourth and final range is n ≥ k
2π

log(2k). In this range we use the decay of the integral∫∞
4πn

uk−2e−u du. We have that u ≥ 2k log(2k) and so uk−2e−u ≤ e−u/2 and so the integral is

bounded by 2e−2πn. Bounding a(n) and r2k(n) as before, we have that the contribution from
this range is at most

34

3(4π)k

∞∑
n= k

2π
log(2k)

2n
k
2

nk−1
·

(
3

25
· (4.11)2k√

(2k)!

)
(n+ 2k)k−1 · 2e−2πn.

We write (n+2k)k−1

nk−1 as
(
1 + 2k

n

)k−1
. If k ≥ 40, 1 + 2k

n
≤ 3.87 and we get

136

25(4π)k
· (4.11)2k(3.87)k−1√

(2k)!

∞∑
n= k

2π
log(2k)

n
k
2 e−2πn.

If an = n
k
2 e−2πn, then we have

an+1

an
≤
(

1 +
1

n

) k
2

e−2π ≤ e
k
2n
−2π ≤ e−2π+ π

log(2k) ≤ e−5.6.

Thus, we get the bound

136

25(4π)k
· (4.11)2k(3.87)k−1√

(2k)!
·
(
k

2π
log(2k)

) k
2

(2k)−k · 1

1− e−5.6
,

valid if k ≥ 40.

The second part of the contribution from the cusp at infinity is

1

2π

∫ 1/2

−1/2

∫ 1

√
1−x2

θ2k(x+ iy)g(x+ iy)yk−2 dy dx.

In this region we use Lemma 4 to bound g(x+ iy), and we use that

|θ(z)| ≤ 1 + 2
∞∑
n=1

e−2πn2y ≤ 1.008667

for y ≥
√

3/2. This gives the bound

Γ
(
k+1

2

) [
log
(
k+1

2

)
+ γ + 1

]
(1.008667)2k

(2π)
k+3
2

∫ 1/2

−1/2

∫ 1

√
1−x2

y
k−5
2 dy dx.

The double integral above is less than or equal to
∫ 1/2

−1/2

∫ 1

0
y
k−5
2 dy dx = 2

k−3
. Hence, we get the

bound
34Γ

(
k+1

2

) [
log
(
k+1

2

)
+ γ + 1

]
(1.008667)2k

3(k − 3)(2π)
k+3
2

,

valid for k ≥ 7.
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Term 2: This is the contribution of the cusp at zero, and in particular the contributions from
the terms involving γ2, γ3, γ4, and γ5. We have

θ2k|W4 = (−1)
k
2 θ2k and g̃i|W4 = (−1)

k
2 g̃i.

Translating this into Fourier expansions gives

θ2k|
[
0 −1
1 0

]
=

(−1)
k
2

2k
θ2k
(z

4

)
, g̃i|

[
0 −1
1 0

]
=

(−1)
k
2

2k
g̃i

(z
4

)
.

Thus, the contribution from these four terms is

1

(2π) · 4k
3∑
j=0

∫ 1/2

−1/2

∫ ∞
√

1−x2
θ2k

(
x+ j + iy

4

)
g̃i

(
x+ j + iy

4

)
yk−2 dy dx.

We set u = x/4 and v = y/4 in the integrand and obtain

1

2π

3∑
j=0

∫ 1/8

−1/8

∫ ∞
√

1−16u2

4

θ2k

(
u+ iv +

j

4

)
g̃i

(
u+ iv +

j

4

)
vk−2 dv du.

We break this into two terms. The first term consists of those pieces with v ≤ 1. The smallest
value v takes on this piece is

√
3/8 and since

√
3/8 > 1

2π
, we may use Lemma 4 to bound the

contribution. This yields

|g̃i(u+ iv)| ≤ 17

3 · (2πv)
k+1
2

Γ

(
k + 1

2

)[
log

(
k + 1

2

)
+ γ + 1

]
.

We also have

|θ(u+ iv)| ≤ 1 + 2
∞∑
n=1

e−2πn2v ≤ 1.52182

for v ≥
√

3/8. The contribution of these terms is therefore bounded by

17 · (1.52182)2k

3 · (2π)
k+3
2

Γ

(
k + 1

2

)[
log

(
k + 1

2

)
+ γ + 1

] 3∑
j=0

∫ 1/8

−1/8

∫ 1

√
1−16u2

4

v
k−5
2 dv du

The sum of double integrals is bounded by
∫ 1/2

−1/2

∫ 1

0
v
k−5
2 dv = 2

k−3
and we get the bound

34 · (1.52182)2k

3 · (2π)
k+3
2 · (k − 3)

Γ

(
k + 1

2

)[
log

(
k + 1

2

)
+ γ + 1

]
,

on the part where v ≤ 1, valid for k ≥ 7.

The second term consists of those pieces with v ≥ 1. This gives

1

2π

∫ 1/2

−1/2

∫ ∞
1

θ2k(u+ iv)g̃i(u+ iv)vk−2 dv du.

This is exactly the same as the contribution of the first part of the cusp at infinity!
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Term 3: This is the contribution of the cusp at 1/2 corresponding to the matrix γ6. We must
understand the Fourier expansion of g̃i|γ6. Since γ6 ∈ Γ0(2), terms of level 1 or level 2 are not
affected.

If g is a newform of level 4, then since γ6 is not in Γ0(4), we have that g 7→ g + g|γ6 is the
trace map from Sk(Γ0(4)) to Sk(Γ0(2)). Since newforms are in the kernel of the trace map (by
Theorem 4 of [16]), it follows that g + g|γ6 = 0 and so g|γ6 = −g.

If g is a newform of level 2, we have

g|V (2)|γ6 = 2−k/2g|
[
2 0
0 1

] [
1 0
2 1

]
= 2−k/2g|

[
0 −1
2 0

] [
1 0
−2 1

] [
1 1/2
0 1

]
.

The first matrix is the Atkin-Lehner involution of level 2, of which g is an eigenform. The second
matrix is in Γ0(2) and the third matrix does not affect the size of the Fourier coefficients at

infinity. It follows that the nth Fourier coefficient of g|V (2)|γ6 is bounded by 2−k/2d(n)n
k−1
2 .

If g is a newform of level 1, we have

g|V (4)|γ6 = 2−kg

[
4 0
0 1

] [
1 0
2 1

]
= 2−kg|

[
2 1
1 1

] [
2 −1
0 2

]
= 2−kg(z − 1/2).

Thus, the nth Fourier coefficient of g|V (4)|γ6 is bounded by 2−kd(n)n
k−1
2 . It follows that for

any g̃i, the nth coefficient of g̃i|γ6 is bounded by 14
3
d(n)n

k−1
2 .

Now, θ2k|γ6 = 22k η(4z)4k

η(2z)4k
. The form F (z) = η(4z)8

η(2z)4
∈M2(Γ0(4)) and satisfies

F (z) =
∑
n odd

σ(n)qn.

Thus, for y ≥
√

3/2, |F (z)| ≤ e−2πy
(∑

n odd σ(n)e−2π(n−1)y
)
≤ 1.0001e−2πy and so

|θ2k|γ6| ≤ 22k(1.0001)k/2e−kπy

for y ≥
√

3/2. The contribution of the cusp at 1/2 is therefore

1

2π

∫ 1/2

−1/2

∫ ∞
√

1−x2
θ2k|γ6(x+ iy)g̃i|γ6(x+ iy)yk−2 dy dx.

By Lemma 4, we have

|g̃i|γ6(x+ iy)| ≤ 14

3

1

(2π)
k+1
2

Γ

(
k + 1

2

)[
log

(
k + 1

2

)
+ γ + 1

]
· 1

y
k+1
2

.

This gives the bound

14 · 22k · (1.0001)k/2

3(2π)
k+3
2

Γ

(
k + 1

2

)[
log

(
k + 1

2

)
+ γ + 1

] ∫ ∞
0

y
k−5
2 e−kπy dy.
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The integral above is 1

(kπ)
k−3
2

Γ
(
k−3

2

)
, and so the bound on this term is

14 · 22k · (1.0001)k/2

3(2π)
k+3
2 (kπ)

k−3
2

Γ

(
k + 1

2

)
Γ

(
k − 3

2

)[
log

(
k + 1

2

)
+ γ + 1

]
and is valid for k ≥ 7.

After dividing each term above by (k−2)!
(4π)k

, the main term is increasing linearly (it is about 16k),

and each other term decreases exponentially. The most troublesome term is the term from the

third range of values of n from the cusp at infinity, and (after dividing by (k−2)!
(4π)k

) is asymptotic

to c1c
k
2k

1/4 ln(k)3/2, where c2 ≈ 0.918, but c1 ≈ 1.69 · 10543. This term is larger than the main
term only when k ≥ 14000.

For this reason, we must explicitly calculate our bounds for k < 14000. In this range, we refine
our estimate of the troublesome term by using the exact values of the incomplete Γ-function∫∞

4πn
uk−2e−u du. Also, for k ≤ 2550, we compute the values of r2k(n) explicitly for 2 ≤ n ≤ 2500

and use these in our bounds. For k ≥ 2552, we use part 2 of Lemma 3.

Finally, for k ≤ 194, our numerical bounds are not sufficient and we use Magma to explicitly
compute the decomposition of θ2k as in equation (2) and find that the constants ci are non-
negative. �

Proof of Theorem 1. First, assume that n is odd. Considering the coefficient of q on both sides
of (2), we obtain

r2k(1) = 4k =
2k(−1)k/2

(2k − 1)Bk

+
∑
i

ci.

By Theorem 2, we have ∑
i

|ci| =
∑
i

ci = 4k − 2k(−1)k/2

(2k − 1)Bk

.

Deligne’s bound on the nth coefficient of gi(z) is bounded by d(n)n
k−1
2 . Plugging this bound

into the decomposition and using the fact that the coefficients of qn in gi(2z) and gi(4z) are
zero if n is odd gives the desired bound on the cusp form contribution to θ2k(z).

Now, suppose that k/2 is odd and n is even. Then k ≡ 2 (mod 4). We represent the decom-
position of the cusp form part of θ2k(z) as

C(z) =
∑
i

ri
(
fi(z)− 2kfi(z)|V (4)

)
+
∑
i

si

(
gi(z)− 2

k
2λigi(z)|V (2)

)
+
∑
i

tihi(z).

Here, the fi(z), gi(z) and hi(z) are the newforms of levels 1, 2, and 4 respectively, and λi is the
Atkin-Lehner eigenvalue of gi(z). One can see that the nth coefficients of fi(z)− 2kfi(z)|V (4)
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and gi(z)− 2
k
2λigi(z)|V (2) are bounded by 3d(n)n

k−1
2 . Thus, for even n, we obtain the bound(∑

i

3ri + 3si

)
d(n)n

k−1
2 .

We will show that
∑

i 3ri + 3si < 4k − 2k
(2k−1)Bk

.

To compute the constant
∑

i 3ri + 3si, we will compute the trace of C(z) to Sk(Γ0(2)), given

by Tr(C) := C(z) +C(z)|
[
1 0
2 1

]
. Straight-forward, but somewhat lengthy computations show

that

Tr(fi(z)− 2kfi(z)|V (4)) = 3fi(z)− 2ai(2)fi(z)|V (2)

Tr(gi(z)− 2
k
2λigi(z)|V (2) = 3gi(z)

Tr(hi(z)) = 0.

It follows from these formulas that
∑

i 3ri + 3si is the coefficient of q in Tr(C). We have that

C = θ2k +
1

2k − 1
Ek(z)− 2k

2k − 1
Ek(4z)

Tr(C) = Tr(θ2k)− (−1)k/2

2k − 1
Tr(Ek(z))− 2k

2k − 1
Tr(Ek(4z))

=

(
θ2k + 4k

η4k(4z)

η2k(2z)

)
+

2

2k − 1
Ek(z)− 2k

2k − 1

(
(1 + 21−k)Ek(z)|V (2)− 2−kEk(z)

)
.

Taking the coefficient of q on both sides of the preceding equation gives∑
i

3ri + 3si = 4k − 6k

(2k − 1)Bk

< 4k − 2k

(2k − 1)Bk

since k ≡ 2 (mod 4) and hence Bk > 0. This proves Theorem 1 in the case that k ≡ 2 (mod 4)
and n is even. �

5. Final remarks

It is natural to consider if Theorem 1 is true in other cases. When k ≡ 0 (mod 4) and n is
even, the main issue is that if gi is a level 1 eigenform and

g̃i = gi −
4

3
a(2)gi|V (2) + 2kgi|V (4) =

∞∑
n=1

c(n)qn

then the best possible bound on the Fourier coefficients of g̃i is |c(n)| ≤ 2d(n)n
k−1
2 . In order for

this bound to come close to being achieved, it is necessary for |a(2)|, the absolute value of the

second coefficient in gi, to be close to 2 · 2 k−1
2 . Serre proved in 1997 (see [23]) that if p is a fixed

prime, the pth coefficients of newforms become equidistributed (along any sequence of weights
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and levels whose sum tends to infinity, where the levels are not multiples of p). It follows from

this that there will be level 1 eigenforms with |a(2)| arbitrarily close to 2 · 2 k−1
2 , but also that

there will be few such forms. One approach to extending Theorem 1 to the case when k ≡ 0
(mod 4) is to use the equidistribution of the numbers |a(2)|.
It is also natural to consider the problem of deriving a sharp bound in the case that k is odd.
In the case when k is even, the contribution from the cusp at zero is (up to a fairly small
error) the same as the contribution at the cusp at infinity, since both θ2k and the newforms
are eigenforms of the Atkin-Lehner involution W4. However, when k is odd, the newforms are
not eigenforms of W4 any longer. This means that the contribution of the cusp at zero is (up
to some small error) the contribution of the cusp at infinity times some complex number λ
of absolute value 1. This complex number is related to the coefficient of q4 of the relevant
eigenform gi. A similar result could be proven provided one could rule out the possibility that
λ is close to −1. In fact, the analogue of Theorem 2 is false for k = 17, although this seems to
be a consequence of the smallness of the weight, rather than a value of λ too close to −1.

For half-integral values of k (corresponding to representations of n as the sum of an odd
number of squares), the question is still interesting. In this case, the coefficients of the cusp
forms involve square roots of central critical L-values of quadratic twists of forms of level 1 and
level 2. The analogue of Deligne’s theorem in this case would be optimal subconvexity bounds
on these L-values, currently attainable only under the assumption of the generalized Riemann
hypothesis.
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