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Abstract. A certain sequence of weight 1/2 modular forms arises in the theory
of Borcherds products for modular forms for SL2(Z). Zagier proved a family of
identities between the coefficients of these weight 1/2 forms and a similar sequence
of weight 3/2 modular forms, which interpolate traces of singular moduli. We obtain
the analogous results for modular forms arising from Borcherds products for Hilbert
modular forms.

1. Introduction and Statement of Results

For an integer k ≥ 0, let M+
k+1/2(Γ0(4)) denote the vector space of nearly holomor-

phic modular forms f(z) of weight k + 1/2 for Γ0(4) with the property that if

f(z) =
∞∑

n=−h

c(n)qn

is the Fourier expansion of f in the variable q = e2πiz, then c(n) = 0 if (−1)kn ≡ 2, 3
(mod 4). Here a modular form is called nearly holomorphic if it is holomorphic on
the upper half plane and meromorphic at the cusps. For d ≥ 0, d ≡ 0, 3 (mod 4) let
fd(z) denote the unique form in M+

1/2(Γ0(4)) with

fd(z) = q−d +O(q) =
∞∑

n=−d

ad(n)qn. (1)

The fd(z) form a basis for the space M+
1/2(Γ0(4)). As proven by Borcherds in [1] (The-

orem 14.1), the fd(z) have an interpretation in terms of infinite product expansions
of certain meromorphic modular forms for SL2(Z).

Theorem (Borcherds). Let f(z) =
∑
c(n)qn ∈M+

1/2(Γ0(4)) with c(n) ∈ Z. If

ψ(z) = q−h

∞∏
n=1

(1− qn)c(n2),
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where h is the constant term of f(z)
∑

nH(n)qn (here H(n) is the Hurwitz class
number), then ψ(z) has the following properties:

(1) The function ψ(z) is a meromorphic modular form of weight c(0) for some
character of SL2(Z), with leading coefficient 1 and integer coefficients.

(2) All zeroes and poles of ψ are at imaginary quadratic irrationals. Moreover,
the multiplicity of zero or pole at an imaginary quadratic irrationality τ of
discriminant D < 0 is ∑

d>0

c(Dd2).

Conversely, any meromorphic modular form ψ(z) for SL2(Z) with zeroes and poles
at imaginary quadratic irrationals has a product representation of the above form.

Here, if τ is the root in the upper half plane H of az2+bz+c = 0 with gcd(a, b, c) = 1,
then we say the discriminant of τ is b2 − 4ac. For d ≥ 1, d ≡ 0, 1 (mod 4), let gd(z)
denote the unique form in M+

3/2(Γ0(4)) with

gd(z) = q−d +O(1) =
∞∑

n=−d

bd(n)qn. (2)

In [5] (Theorem 4), Zagier proves the “duality” theorem relating the forms fd(z)
and gd(z).

Theorem (Zagier). If d is a non-negative integer, n ≥ 1 with d ≡ 0, 3 (mod 4) and
n ≡ 0, 1 (mod 4), then

ad(n) = −bn(d).

Our goal is to provide analogues of this duality for forms that arise in the theory
of Borcherds products for Hilbert modular forms. To make this precise, suppose that
p ≡ 1 (mod 4) is prime and let χp denote the Dirichlet character

( ·
p

)
. For an integer

k ≥ 0 and ε = ±1 let Aε
k(Γ0(p), χp) denote the space of nearly holomorphic modular

forms F (z) of weight k and character χp such that if F (z) =
∑
c(n)qn, then c(n) = 0

for χp(n) = −ε. Finally, let

s(n) =

{
2 n ≡ 0 (mod p)

1 n 6≡ 0 (mod p).
(3)

In [3], Bruinier and Bundschuh explicitly work out, in terms of classical elliptic
modular forms, the Borcherds theory for Hilbert modular forms in the special case of
the real quadratic fields Q(

√
p) for primes p ≡ 1 (mod 4). They show that the coeffi-

cients of such an F (z) have an interpretation in terms of infinite product expansions
for certain Hilbert modular forms.

Let K = Q(
√
p) and let OK = Z

[
1+

√
p

2

]
be the ring of algebraic integers in K. We

denote conjugation in K by x 7→ x. For x ∈ K, we write tr(x) = x+x and N(x) = xx
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for the trace and norm functions. Let d = (
√
p) denote the different of K. For z ∈ C

we write z = x+ yi for x, y ∈ R. Also, for z ∈ C, let e(z) = e2πiz.
The Hilbert modular group ΓK = SL2(OK) acts on H×H as follows. If (z1, z2) ∈

H×H and M =

(
a b
c d

)
∈ ΓK then

M · (z1, z2) =

(
az1 + b

cz1 + d
,
az2 + b

cz2 + d

)
.

A Hilbert modular form of weight k is, roughly speaking, a meromorphic function
Ψ(z1, z2) on H×H such that

Ψ(M · (z1, z2)) = (cz1 + d)k(cz2 + d)kΨ(z1, z2).

For basic facts about Hilbert modular forms, see [4].
For m > 0 define the Hirzebruch-Zagier divisor on the Hilbert modular surface

(H×H)/ΓK to be the image of

T (m) =
⋃

(a,b,λ)∈Z⊕Z⊕d−1

ab−N(λ)=m/p

{
(z1, z2) ∈ H×H : az1z2 + λz1 + λz2 + b = 0

}
. (4)

Here, we understand that all irreducible components of T (m) have multiplicity one.
Let

S(m) =
⋃

λ∈d−1

−N(λ)=m/p

{(z1, z2) ∈ H×H : λy1 + λy2 = 0}. (5)

For W ⊆ H×H and λ ∈ d−1 we write (W,λ) > 0 if λy1 +λy2 > 0 for all (z1, z2) ∈ W .
Finally, we state Bruinier and Bundschuh’s result (Theorem 9 of [3]).

Theorem (Bruinier and Bundschuh). Let F =
∑

n∈Z a(n)qn ∈ A+
0 (Γ0(p), χp) and

assume that s(n)a(n) ∈ Z for all n < 0. Then there is a function Ψ(z1, z2) on H×H
with the following properties:

(1) The function Ψ is a meromorphic modular form for ΓK with some unitary
character of finite order. The weight of Ψ is equal to the constant coefficient
a(0) of F .

(2) The divisor of Ψ is determined by the principal part of F . It equals∑
n<0

s(n)a(n)T (−n).

(3) Let W ⊂ H×H be a Weyl chamber attached to F , i.e., a connected component
of

H×H−
⋃
n<0

a(n) 6=0

S(−n),
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and let N = min{n : a(n) 6= 0}. The function Ψ has the Borcherds product
expansion

Ψ(z1, z2) = e(ρW z1 + ρW z2)
∏

ν∈d−1

(ν,W )>0

(1− e(νz1 + νz2))
s(pνν)a(pνν).

Here ρW is the Weyl vector associated to W , an algebraic number in K that
can be explicitly computed. The product converges normally for (z1, z2) with
y1y2 > |N |/p outside the set of poles.

Conversely, any meromorphic modular form with a divisor that is a linear combination
of Hirzebruch-Zagier divisors has an infinite product expansion of the above form.

For p = 5, 13 and 17 and each m ≥ 1 with χp(m) 6= −1, there is a unique Fm,p(z) ∈
A+

0 (Γ0(p), χp) such that

Fm,p(z) =
1

s(m)
q−m +O(1) =

∞∑
n=−m

Am,p(n)qn. (6)

Similarly, there is a unique

Gm,p(z) =
1

s(m)
q−m +O(q) =

∞∑
n=−m

Bm,p(n)qn (7)

inA+
2 (Γ0(p), χp) (see the appendices for a construction of the Fm,p(z) and theGm,p(z)).

The Zagier duality for the Borcherds exponents is given by the following theorem.

Theorem 1.1. Suppose that p = 5, 13 or 17. If m is a non-negative integer and
d ≥ 1 with χp(d) 6= −1 and χp(m) 6= −1, then

Ad,p(m) = −Bm,p(d).

Remark. The result stated above only holds for the primes p = 5, 13, and 17. Indeed
if p ≡ 1 (mod 4), it follows from Theorem 6 of [3] that there is a form

F1,p(z) = q−1 +O(1) ∈ A+
0 (Γ0(p), χp)

only when there are no weight 2 cusp forms in A+
2 (Γ0(p), χp). A classical result of

Hecke implies that the dimension of the space of cusp forms in this space is
⌊

p−5
24

⌋
.

Thus, such an F1,p(z) exists only for p = 5, 13 and 17.
For larger primes p, the forms in A+

0 (Γ0(p), χp) correspond to Hilbert modular forms
whose divisor is a linear combination of Hirzebruch-Zagier divisors (there are no longer
any Hilbert modular forms whose divisor is a single Hirzebruch-Zagier divisor). It
may be possible to formulate many of these results in this more general context, but
there is no longer a natural choice of the Fm,p(z) and Gm,p(z) (of course, the Gm,p(z)
are no longer unique).
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Remark. The coefficients Bm,p(d) are analogous to the coefficients bd(m), which Zagier
interprets as traces of singular moduli. The coefficients Bm,p(d) may also be inter-
preted as traces of singular moduli on the restriction of the corresponding function
Ψ(z1, z2) to the diagonal z1 = z2.

Acknowledgements. The author is grateful to Ken Ono for his assistance. The
author used Magma ([2]) version 2.10-22 for computations.

2. Proof of Theorem 1.1

Let Ak(Γ0(p), χp) denote the space of nearly holomorphic forms of weight k and
character χp. The key idea involved in the proof of Theorem 1.1 is to determine how
Hecke operators act on the space A0(Γ0(p), χp).

Let Wp denote the Fricke involution on Ak(Γ0(p), χp), namely

F (z)|Wp = p−k/2z−kF

(
−1

pz

)
.

It is straightforward to see that if F (z) ∈ Ak(Γ0(p), χp) then F (z)|Wp ∈ Ak(Γ0(p), χp),
and it is easy to see that F (z)|Wp|Wp = F (z). We define the Fourier expansion of
F (z) at zero to be the Fourier expansion of the form F (z)|Wp.

Proposition 2.1. If F (z) ∈ A0(Γ0(p), χp), then F (z) is uniquely determined by the
principal parts of its Fourier expansions at ∞ and 0.

Proof. First note that the only cusps of Γ0(p) are ∞ and 0. If F1(z), F2(z) ∈
A0(Γ0(p), χp) have the same principal part in their Fourier expansions at ∞ and
at 0, then F3(z) = F1(z)−F2(z) is holomorphic at each cusp, and since F1 and F2 are
(by assumption) holomorphic on H, it follows that F3(z) is a holomorphic modular
form of weight 0, which implies that F3(z) = c is a constant. Suppose that d ∈ Z is
a quadratic non-residue modulo p. Then, d and p are relatively prime so there exist
a and b such that ad− bp = 1. Then,

F3

(
az + b

pz + d

)
= χp(d)F3(z).

Since χp(d) = −1, this means that c = −c and hence F3(z) = c = 0. Thus, F1(z) =
F2(z). �

For F (z) ∈ Aε
k(Γ0(p), χp), there is a relationship between the Fourier expansion at

∞ and at 0. Before we state this relationship, we need some notation. Let Up = Tp

be the usual operator on Ak(Γ0(p), χp) defined as follows. If

F (z) =
∑
n∈Z

A(n)qn,
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then

F (z)|Up =
∑
n∈Z

A(pn)qn. (8)

Now, Lemma 3 of [3] gives the relationship between the Fourier expansion at∞ and 0.
Note that our normalization of Up is slightly different than Bruinier and Bundschuh’s.

Lemma 2.2. Let F (z) =
∑

n∈ZA(n)qn ∈ Ak(Γ0(p), χp) and ε ∈ {±1}. Then, F (z) ∈
Aε

k(Γ0(p), χp) if and only if

p1−k/2(F |Up) = ε
√
p(F |Wp).

Before we describe the action of Hecke operators on the space A0(Γ0(p), χp), we
need some further definitions. For the remainder of this paper we make the following
restriction:

p = 5, 13, or 17.

We extend our definitions of the Fm,p(z) to include forms in the space A−
0 (Γ0(p), χp).

For χp(m) = −1, let Fm,p(z) be the unique form in A−
0 (Γ0(p), χp) such that

Fm,p(z) =
∞∑

n=−m

Am,p(n)qn = q−m +O(1). (9)

Similarly, for m divisible by p, let F−
m,p(z) be the unique form in A−

0 (Γ0(p), χp) such
that

F−
m,p(z) =

∞∑
n=−m

A−
m,p(n)qn =

1

2
q−m +O(1). (10)

For a method of constructing the Fm,p(z) for χp(m) = −1 and F−
m,p(z), see the

appendices.

Definition. For m ≥ 1, let Hm,p(z) ∈ A0(Γ0(p), χp) be the unique form such that

Hm,p(z) = O(1)

and

Hm,p(z)|Wp = q−m +O(1).

Similarly, for m ≥ 1 let Im,p(z) ∈ A0(Γ0(p), χp) be the unique form such that

Im,p(z) = q−m +O(1)

and

Im,p(z)|Wp = O(1).

The following lemmas will provide a description of the action of the Hecke oper-
ators on the elements of A0(Γ0(p), χp). The existence of the Hm,p(z) and Im,p(z) is
established from these lemmas.
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Lemma 2.3. If gcd(m, p) = 1 then

χp(m)m(F1,p(z)|Tm) = Fm,p(z).

Proof. The action of the Hecke operator on F1,p is given by

F1,p|Tm =
∞∑

n=−∞

 ∑
d| gcd(m,n)

χp(d)

d
A1,p(mn/d

2)

 qn.

Now, if n < 0, then mn/d2 < 0. Hence, the principal part arises from the terms
where mn/d2 = −1. Since d|m and d|n, it follows that we must have that m = n = d.
Thus,

F1,p|Tm =
χp(m)

m
q−m +O(1).

Thus,

χp(m)m(F1,p|Tm) = (χp(m))2q−m +O(1) = q−m +O(1).

Now, if gcd(n, p) = 1 and χp(n) 6= χp(m) then χp(mn) = −1 and hence χp(mn/d
2) =

−1 for all d| gcd(m,n). Thus, the coefficient of qn in F1,p|Tm is zero. Thus,

χp(m)m(F1,p|Tm) ∈ A
χp(m)
0 (Γ0(p), χp). From Lemma 2.2, it follows that such a form

is unique and since Fm,p satisfies the same conditions we have that

χp(m)m(F1,p|Tm) = Fm,p,

as desired. �

Lemma 2.4. If m ≥ 1 then

Hm,p(z) =
1
√
p

(
Fpm,p(z)− F−

pm,p(z)
)
.

Proof. From Proposition 2.1, it suffices to show that the two forms have the same
principal parts in their Fourier expansions at ∞ and at zero. Obviously

Fpm,p(z)− F−
pm,p(z) = O(1).

Also from Lemma 2.2

1
√
p
(Fpm,p(z)− F−

pm,p(z))|Wp =
1
√
p
Fpm,p(z)|Wp −

1
√
p
F−

pm,p(z)|Wp

= Fpm,p(z)|Up + F−
pm,p(z)|Up

=

(
1

2
q−pm +O(1)

)
|Up +

(
1

2
q−pm +O(1)

)
|Up

= q−m +O(1).
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Thus, principal parts of the Fourier expansions of 1√
p
(Fpm,p(z)−F−

pm,p(z)) and Hm,p(z)

agree and hence

Hm,p(z) =
1
√
p
(Fpm,p(z)− F−

pm,p(z)),

as desired. �

Lemma 2.5. If gcd(m, p) = 1 then

Hm,p(z) = χp(m)
√
p(Fm,p(z)|Up).

Proof. Note that Fm,p(z)|Up = (q−m + O(1))|Up = O(1). Thus, Fm,p(z)|Up is holo-
morphic at ∞. However by Lemma 2.2,

χp(m)
√
p(Fm,p(z)|Up)|Wp = χp(m)

√
p

(
χp(m)
√
p
Fm,p(z)

)
|Wp|Wp

= Fm,p(z) = q−m +O(1).

Thus, the two functions have the same principal parts of the Fourier expansions at
∞ and zero and hence they agree. �

Lemma 2.6. If p|m then

Hpm,p(z) = p(Hm,p(z)|Up).

Proof. Since Hm,p(z) is holomorphic at ∞ so is Hm,p(z)|Up. Now, from Lemma 2.4,

p(Hm,p(z)|Up)|Wp = p

(
1
√
p
Fpm,p(z)−

1
√
p
F−

pm,p(z)

)
|Up|Wp

=
(
Fpm,p + F−

pm,p

)
|Wp|Wp

= Fpm,p + F−
pm,p = q−pm +O(1).

The desired result follows since the principal parts of the two functions are the same
at both cusps. �

Lemma 2.7. For m ≥ 1,

Im,p(z) = (Fpm,p(z) + F−
pm,p(z))|Up.

Proof. Clearly,

(Fpm,p + F−
pm,p)|Up =

(
1

2
q−pm +O(1)

)
|Up +

(
1

2
q−pm +O(1)

)
|Up

= 2

(
1

2
q−m +O(1)

)
= q−m +O(1).
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Also,

(Fpm,p + F−
pm,p)|Up|Wp =

1
√
p
Fpm,p|Wp|Wp −

1
√
p
F−

pm,p|Wp|Wp

=
1
√
p
Fpm,p −

1
√
p
F−

pm,p = O(1).

Thus, the functions have the same Fourier expansion at each cusp, so they are equal.
�

Lemma 2.8. For m ≥ 1,

Im,p(z) =

{
Fm,p(z) if gcd(m, p) = 1,

Fm,p(z) + F−
m,p(z) if p|m.

Proof. Note that if gcd(m, p) = 1 then the Fourier expansions of Fm,p and Im,p at
infinity agree. The Fourier expansion of Fm,p at zero is

Fm,p|Wp =
χp(m)
√
p
Fm,p|Up

=
χp(m)
√
p

(q−m +O(1))|Up = O(1).

Thus, Fm,p and Im,p have the same Fourier expansions at each cusp provided m and
p are coprime, and hence for such m, Fm,p = Im,p.

If p|m, then

Fm,p + F−
m,p =

(
1

2
q−m +O(1)

)
+

(
1

2
q−m +O(1)

)
= q−m +O(1).

At zero,(
Fm,p + F−

m,p

)
|Wp = Fm,p|Wp + F−

m,p|Wp

=
√
pFm,p|Up −

√
pF−

m,p|Up

= (
√
pq−m +O(1))|Up + (−√pq−m +O(1))|Up = O(1).

Thus, Fm,p + F−
m,p and Im,p have the same Fourier expansion at each cusp and hence

Im,p = Fm,p + F−
m,p, as desired. �

Remark. The above lemmas give an expression for the coefficients of Fm,p(z) in terms
of the coefficients of F1,p(z).

We will now use the lemmas to work towards a proof of Theorem 1.1.

Lemma 2.9. Suppose that m and n are positive integers coprime to p. Then,

χp(n)nAm,p(n) = χp(m)mAn,p(m).
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Proof. From Lemma 2.3, we know that

Fm,p = χp(m)m(F1,p|Tm)

Fn,p = χp(n)n(F1,p|Tn).

Now, the nth coefficient of (χp(n)n)Fm,p is

χp(n)nAm,p(n) = mnχp(mn)
∑

d| gcd(m,n)

χp(d)

d
A1,p(mn/d

2).

Similarly, the mth coefficient of (χp(m)m)Fn,p is

χp(m)mAn,p(m) = mnχp(mn)
∑

d| gcd(m,n)

χp(d)

d
A1,p(nm/d

2).

Thus,

χp(n)nAm,p(n) = χp(m)mAn,p(m),

as desired. �

Lemma 2.10. Suppose that p|m and gcd(n, p) = 1. Then,

χp(n)n
[
Am,p(n)− A−

m,p(n)
]

= mAn,p(m).

Proof. Write m = pbm′ with m′ coprime to p. From Lemma 2.3,

χp(m
′)m′(F1,p|Tm′) = Fm′,p.

From Lemma 2.5,

χp(m
′)
√
pFm′,p|Up = Hm′,p.

From a repeated application of Lemma 2.6,

pb−1Hm′,p|U b−1
p = Hpb−1m′,p.

Finally, from Lemma 2.4,

Hpb−1m′,p =
1
√
p
(Fpbm′ − F−

pbm′).

Putting all these equations together gives that

Fpbm′,p − F−
pbm′,p

=
√
pHpb−1m′,p =

√
ppb−1Hm′,p|U b−1

p

= χp(m
′)pbFm′,p|U b

p = pbFm′,p|U b
p

= pbm′F1,p|Tpbm′ .

Writing m = pbm′, multiplying by χp(n)n and considering the nth coefficient gives

χp(n)nAm,p(n)− χp(n)nA−
m,p(n) = mχp(n)n

∑
d| gcd(m,n)

χp(d)d
−1A1,p(mn/d

2). (11)
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Lemma 2.3 also implies that

Fn,p = χp(n)n(F1,p|Tn).

Considering the mth coefficient and multiplying by m gives

mAn,p(m) = mχp(n)n
∑

d| gcd(m,n)

χp(d)d
−1A1,p(mn/d

2). (12)

Now, the right hand sides of equations (11) and (12) agree and hence the left hand
sides agree. This gives

mAn,p(m) = χp(n)nAm,p(n)− χp(n)nA−
m,p(n),

as desired. �

The previous lemmas above imply the following lemma, which is the key to the
proof of Theorem 1.1.

Lemma 2.11. If m and n are positive integers with χp(m) 6= −1 and χp(n) 6= −1,
then mAn,p(m) = nAm,p(n).

Proof. From Lemma 2.9 and Lemma 2.10, it suffices to prove the result when p|m
and p|n. Write m = pam′ and n = pbn′ with m′ and n′ coprime to p. Assume without
loss of generality that a ≥ b.

First, suppose that a > b. From Lemmas 2.4 and 2.6

Fm,p − F−
m,p =

√
pHm/p,p = pb√pHm/pb+1,p|U b

p = pb(Fm/pb,p − F−
m/pb,p

)|U b
p . (13)

From Lemmas 2.8 and 2.7, it follows that

(Fm,p + F−
m,p)|U b

p = Im/pb,p = Fm/pb,p + F−
m/pb,p

. (14)

Taking the nth coefficient on both sides of equation (13) and the n/pbth coefficient
on both sides of equation (14) gives

Am,p(n)− A−
m,p(n) = pbAm/pb,p(p

bn)− pbA−
m/pb,p

(pbn)

Am,p(n) + A−
m,p(n) = Am/pb,p(n/p

b) + A−
m/pb,p

(n/pb).

Adding and multiplying by n gives

2nAm,p(n) = pbnAm/pb,p(p
bn)− pbnA−

m/pb,p
(pbn) + nAm/pb,p(n/p

b) + nA−
m/pb,p

(n/pb).

(15)
Now, Lemmas 2.4, 2.5, and 2.6 imply that

Fn,p − F−
n,p =

√
pHn/p,p =

√
ppb−1Hn/pb,p|U b−1

p

=
√
ppb−1χp(n

′)
√
p(Fn′,p|Up)|U b−1

p

= χp(n
′)pbFn′,p|U b

p .
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Taking the mth coefficient of this equation yields

An,p(m)− A−
n,p(m) = χp(n

′)pbAn′,p(p
bm). (16)

Now, Lemmas 2.7 and 2.8 imply that

(Fn,p + F−
n,p)|U b

p = In′,p = Fn′,p.

Taking the m/pbth coefficient of this equation yields

An,p(m) + A−
n,p(m) = An′,p(m/p

b). (17)

Now, adding (16) and (17) and multiplying by m gives

2mAn,p(m) = mχp(n
′)pbAn′,p(p

bm) +mAn′,p(m/p
b). (18)

Now, I will show that the right hand side of (15) is equal to the right hand side of
(18).

By Lemma 2.10, we have that

mAn′,p(m/p
b) = pb(m/pb)An′,p(m/p

b) = pbχp(n
′)n′

[
Am/pb,p(n

′)− A−
m/pb,p

(n′)
]
.

Note that

pbχp(n
′)n′

[
Am/pb,p(n

′)− A−
m/pb,p

(n′)
]

= n
[
Am/pb,p(n

′) + A−
m/pb,p

(n′)
]

since Am/pb,p(n
′) = 0 if χp(n

′) = −1 and A−
m/pb,p

(n′) = 0 if χp(n
′) = 1. Thus, the

second term on the right hand side of (18) is equal to the sum of the third and fourth
terms on the right hand side of (15).

Again, by Lemma 2.10, we have that

mχp(n
′)pbAn′,p(p

bm) = n′χp(n
′)

(
χp(n

′)
[
Apbm,p(n

′)− A−
pbm,p

(n′)
])
. (19)

Now, from Lemmas 2.4 and 2.6

Fpbm,p − F−
pbm,p

=
√
pHpb−1m,p =

√
pp2bHm/pb+1,p|U2b

p

= p2b
(
Fm/pb,p − F−

m/pb,p

)
|U2b

p .

Taking the n′th coefficient gives

Apbm,p(n
′)− A−

pbm,p
(n′) = p2b

[
Am/pb,p(p

bn)− A−
m/pb,p

(pbn)
]
.

Plugging this into (19) gives

mχp(n
′)pbAn′,p(p

bm) = npb
[
Am/pb,p(np

b)− A−
m/pb,p

(npb)
]
.

Hence, the first term on the right hand side of (18) equals the sum of the first two
terms on the right hand side of (15). Hence, the right hand side of (18) equals the
right hand side of (15) giving

nAm,p(n) = mAn,p(m),
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as desired.
Second, suppose that a = b. This case is analogous to when a > b, but with simpler

identities. From Lemmas 2.4, 2.6, and 2.5,

Fm,p − F−
m,p =

√
pHm/p,p =

√
ppb−1Hm/pb,p|U b−1

p

=
√
ppb−1

(
χp(m/p

b)
√
pFm/pb,p|Up

)
|U b−1

p

= pbχp(m/p
b)Fm/pb,p|U b

p .

Taking the nth coefficient of both sides gives

Am,p(n)− A−
m,p(n) = pbχp(m

′)Am′,p(p
bn). (20)

Also, Lemmas 2.8 and 2.7 imply that

Fm′,p = Im′,p = Ipb−1m′,p|U b−1
p

=
(
Fm,p + F−

m,p

)
|U b

p .

Taking the n′th coefficient of both sides gives

Am,p(n) + A−
m,p(n) = Am′,p(n

′).

Adding this equation to equation (20) and multiplying by n gives

2nAm,p(n) = npbχp(m
′)Am′,p(p

bn) + nAm′,p(n
′). (21)

Since the largest power of p dividing m and n is the same, analogous arguments show
that the same equation is true with n in place of m. Specifically,

2mAn,p(m) = mpbχp(n
′)An′,p(p

bm) +mAn′,p(m
′). (22)

To complete the proof, it suffices to show that the right hand sides of (21) and (22)
agree.

First, note that if χp(n
′) 6= χp(m

′) then An′,p(m
′) = Am′,p(n

′) = 0. On the other
hand, if χp(n

′) = χp(m
′) then χp(m

′n′) = 1. Lemma 2.9 implies in this case that

nAm′,p(n
′) = pbχp(m

′)χp(n
′)n′Am′,p(n

′)

= pbχp(m
′)χp(m

′)m′An′,p(m
′)

= mAn′,p(m
′),

as desired. Thus, the second term on the right hand side of equation (21) equals the
second term on the right hand side of equation (22).

Second, from Lemma 2.10, it follows that

npbχp(m
′)Am′,p(p

bn) = m′
[
Apbn,p(m

′)− A−
pbn

(m′)
]
.

Now, from Lemmas 2.4, 2.5, and 2.6, it follows that

Fpbn,p − F−
pbn,p

=
√
pHpbn,p =

√
pp2b−1Hn/pb,p|U2b−1

p

= p2bχp(n
′)Fn′,p|U2b

p .
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Hence,

m′
[
Apbn,p(m

′)− A−
pbn,p

(m′)
]

= m′p2bχp(n
′)Fn′,p(p

bm) = mpbχp(n
′)An′,p(p

bm).

Thus, combining all of the above equations, we have

npbχp(m
′)Am′,p(p

bn) = mpbχp(n
′)An′,p(p

bm),

and hence the first term on the right hand side of equation (21) equals the first term
on the right hand side of equation (22). Thus, the left hand sides of equation (21)
and (22) are equal, giving nAm,p(n) = mAn,p(m), as desired. �

Proof of Theorem 1.1. Note that if m = 0, then the result follows from Theorem 6 of
[3]. Assume therefore that m > 0.

Note that

d

dz
F

(
az + b

cz + d

)
= F ′

(
az + b

cz + d

)
(cz + d)−2 .

Hence, if F (z) ∈ A0(Γ0(p), χp), then F ′(z) transforms like a weight two modular form.
Also, since the Fourier expansion F (z) =

∑∞
n=−h c(n)qn converges normally in H,

F ′(z) =
∞∑

n=−h

(2πin)c(n)qn. (23)

Thus, F ′(z) is meromorphic at ∞. Similarly, differentiating F (z)|Wp shows that
F ′(z)|Wp is meromorphic at ∞ and hence F ′(z) ∈ A2(Γ0(p), χp).

Now, from (23), we see that if χp(d) 6= −1 then F ′
d,p(z) ∈ A+

2 (Γ0(p), χp). Moreover,

− 1

2πid
F ′

d,p(z) = Gd,p(z).

Hence,

Ad,p(m) = − d

m
Bd,p(m).

Thus, from Lemma 2.11

mAd,p(m) = dAm,p(d)

= d

(
−m
d

)
Bm,p(d)

= −mBm,p(d).

Dividing by m gives Ad,p(m) = −Bm,p(d), as desired. �
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3. Appendix 1. Data for p = 5

Let

K2,5(z) = 1 +
2

L(−1, χ5)

∞∑
n=1

∑
d|n

dχ5(d)q
n = η(z)5/η(5z)

L2,5(z) =
∞∑

n=1

∑
d|n

dχ5(n/d)q
n = η(5z)5/η(z)

be the two weight 2 Eisenstein series for M2(Γ0(5), χ5), where η(z) = q1/24
∏∞

n=1(1−
qn) is the usual Dedekind η-function. Here, L(s, χp) denotes the analytic continuation
of the Dirichlet series

∞∑
n=1

χp(n)

ns
.

Note that L(−1, χ5) = −2/5. Let

M2,5(z) = 1 + 6
∞∑

n=1

(σ(n)− 5σ(n/5))qn ∈M2(Γ0(5))

be the usual weight 2 Eisenstein series for Γ0(5) (no character). Then, the following
are formulas for F1,5(z), . . . , F5,5(z), F

−
5,5(z).

F1,5(z) =
M2,5(z)

L2,5(z)

F2,5(z) = F1,5(z)
K2,5(z)

L2,5(z)
+ F1,5(z)

F3,5(z) = F1,5(z)
3 − 15F2,5(z)− 108F1,5(z)

F4,5(z) = F2,5(z)F1,5(z)
2 − 10F3,5(z)− 42F2,5(z)− 60F1,5(z)

F5,5(z) =
(H2,5(z)− 5I2,5(z))E4(5z)E6(5z)

2∆(5z)
+ 5F4,5(z) + 15F1,5(z)

F−
5,5(z) =

(H2,5(z) + 5I2,5(z))E4(5z)E6(5z)

2∆(5z)
− 5F3,5(z)− 10F2,5(z).

In the last equation, E4(z), E6(z) are the usual weight 4 and 6 Eisenstein series,
respectively, and ∆(z) = q

∏∞
n=1(1− qn)24 is the usual cusp form of weight 12. Note

that the linear combinations H2,5(z)∓ 5I2,5(z) is chosen so that H2,5(z)∓ 5I2,5(z) ∈
A±

2 (Γ0(5), χ5).
The other Fm,5(z) can be computed inductively by multiplying Fm−5,5(z) by j(5z) =

E4(5z)
3/∆(5z) and subtracting off linear combinations of Fm′,5(z) for m′ < m. The
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following is a table of q-expansions for Fm,5(z) for small m.

F1,5(z) = q−1 + 5 + 11q − 54q4 + 55q5 + 44q6 + · · ·
F2,5(z) = q−2 − 5 + 119q2 − 88q3 − 680q5 + 3672q7 + · · ·
F3,5(z) = q−3 − 10− 132q2 + 1196q3 − 4485q5 − 13032q7 + · · ·
F4,5(z) = q−4 + 15− 216q + 4959q4 + 22040q5 − 90984q6 + · · ·

F5,5(z) =
1

2
q−5 + 15 + 275q + 27550q4 + 43893q5 + 255300q6 + · · ·

F−
5,5(z) =

1

2
q−5 − 10− 1700q2 − 7475q3 − 43882q5 − 685950q7 + · · ·

The following are formulas for G0,5(z), . . . , G4,5(z) (here we define

Gm,p(z) ∈ Aχp(m)
2 (Γ0(p), χp) in an analogous way to the Fm,p(z)). The other Gm,5(z)

can be computed inductively in the same way as the Fm,5(z).

G0,5(z) =
K2,5(z)− 5L2,5(z)

2

G−
0,5(z) =

K2,5(z) + 5L2,5(z)

2

G1,5(z) =
K2,5(z)

2

L2,5(z)
+ 11K2,5(z)

G2,5(z) = 2G0,5(z)F1,5(z)
2 − 72G0,5(z) + 178G−

0,5(z)

G3,5(z) = G1,5(z)F1,5(z)
2 − 10G2,5(z)− 36G1,5(z)

G4,5(z) = G2,5(z)F1,5(z)
2 − 10G3,5(z)− 47G2,5(z)− 110G1,5(z)− 2G0,5(z)− 2G−

0,5(z).

The following is a table of the q-expansions for Gm,5(z) for small m.

G0,5(z) =
1

2
− 5q − 15q4 − 15q5 − 10q6 + · · ·

G0,5(z)
− =

1

2
+ 5q2 + 10q3 + 10q5 + 30q7 + · · ·

G1,5(z) = q−1 − 11q + 216q4 − 275q5 − 264q6 + · · ·
G2,5(z) = q−2 − 119q2 + 132q3 + 1700q5 − 12852q7 + · · ·
G3,5(z) = q−3 + 88q2 − 1196q3 + 7475q5 + 30408q7 + · · ·
G4,5(z) = q−4 + 54q − 4959q4 − 27550q5 + 136476q6 + · · · .
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4. Appendix 2. Tables for p = 13

As with p = 5, let

K2,13(z) = 1 +
2

L(−1, χ13)

∞∑
n=1

∑
d|n

dχ13(d)q
n, L2,13(z) =

∞∑
n=1

∑
d|n

dχ13(n/d)q
n

be the weight 2 Eisenstein series for M2(Γ0(13), χ13). Here L(−1, χ13) = −2. Let

M2,13(z) = 1 + 2
∞∑

n=1

(σ(n)− 13σ(n/13))qn ∈M2(Γ0(13))

be the usual weight 2 Eisenstein series. The F1,13(z) and F2,13(z) are given by

F1,13(z) =
M2,13(z)

L2,13(z)

F2,13(z) =
K2,13(z)

L2,13(z)
F1,13(z) + F1,13(z).

Formulas for Fm,13(z) for m ≥ 3 not a multiple of 13 can be found by taking
Fm−2,13(z)F1,13(z)

2 and subtracting off multiples of Fm′,13(z) for m′ < m. This is
similar to the formulas above for F3,5(z) and F4,5(z). Formulas for F13,13(z) and
F−

13,13(z) can be found similar to above. Finally, as above, one can multiply Fm,13(z)
by j(13z) and subtract a linear combination of Fm′,13(z) for m′ < m + 13 to get
Fm+13,13(z). By arguing as in the p = 5 case, one can easily construct the Gm,13(z)
in terms of the above modular forms.

To prove the formulas above, note that Theorem 6 of [3] guarantees the existence of
Fm,13(z) and that Proposition 2.1 and Lemma 2.2 guarantee the uniqueness. Therefore
Fm,13(z)L2,13(z)

m must be holomorphic, and comparing coefficients gives the above
formulas.

5. Appendix 3. Tables for p = 17

Let

K2,17(z) = 1 +
2

L(−1, χ17)

∞∑
n=1

∑
d|n

dχ17(d)q
n, L2,17(z) =

∞∑
n=1

∑
d|n

dχ17(n/d)q
n

be the weight 2 Eisenstein series for M2(Γ0(17), χ17). Here, L(−1, χ17) = −4. Let

M2,17(z) = 1 +
3

2

∞∑
n=1

(σ(n)− 17σ(n/17))qn ∈M2(Γ0(17))

be the usual weight 2 Eisenstein series. Let

S2,17(z) = q − q2 − q4 − 2q5 + 4q7 + 3q8 − 3q9 + · · ·
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be the weight 2 cusp form in S2(Γ0(17)) associated to the elliptic curve X0(17).
Then, the following are formulas for F1,17(z) and F2,17(z). They are more complicated
because the modular curve X0(17) has genus 1 (while X0(5) and X0(13) have genus
0).

F1,17(z) =
K2,17(z)

S2,17(z)

F2,17(z) =
4M2,17(z)

2 − 4M2,17(z)S2,17(z)− 24S2,17(z)
2 − 17L2,17(z)

2

4S2,17(z)L2,17(z)
.

Formulas for the other Fm,17(z) can be determined as in the cases p = 5 and p = 13.
Again, one can easily construct the Gm,17(z) in terms of the above modular forms.
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