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In this note, we observe that many classical theorems from number theory are simple consequences
of the following combinatorial lemma.

Lemma 1. Let S be a finite set, let p be prime, and suppose f : S — S has the property that
fP(x) =z for any x in S, where fP is the p-fold composition of f. Then |S| = |F| (mod p), where
F' is the set of fixed points of f.

Proof. S is the disjoint union of sets of the form {x, f(z),..., fP~1(x)}. Since p is prime, each set
either has size one or size p. o

The Lucas numbers, 2,1,3,4,7,11,18,29,47, ..., named in honor of Edouard Lucas (1842-1891),
are defined by Lo = 2, L1 =1, and L, = L, 1 + L, o for n > 2. It is easy to show that, for
n > 1, L, counts the ways to create a bracelet of length n using beads of length one or two, where
bracelets that differ by a rotation or a reflection are still considered distinct. For example, there are
four bracelets of length three. (Such a bracelet can have three beads of length one, or it can have a
bead of length two and a bead of length one, where the bead of length one can be in position one,
two, or three.) Let f act on bracelets of prime length p by rotating each bead clockwise one unit.
Clearly fP leaves any bracelet unchanged. Since f has just one fixed point (when all beads have
length one), we conclude that L, =1 (mod p) for each prime p.

More generally, as defined in [4], for nonnegative integers a and b, the Lucas sequence (of the
second kind) is defined by Vo = 2,V = a, and V,, = aV,,_1 + bV,,_o for n > 2. Again, it is easy to
show [1] that V,, with n > 1 counts colored bracelets of length n, where there are a color choices for
beads of length one and b color choices for beads of length two. By the same argument as earlier,
with the exception of those bracelets consisting of length one beads all of the same color, when p is
prime every bracelet can be rotated to create p distinct bracelets. Thus, for p prime,

Vo =a (mod p).
In the special case where b = 0, it is clear that V,, = a”. Consequently, we have Fermat’s Theorem:
If p is a prime, then

a? =a (mod p).
This combinatorial proof of Fermat’s theorem was originally given in [2].

Next, consider colored bracelets of length pk, where p is prime. If we rotate the beads k units at
a time, then there are exactly V} fixed points, obtained by taking any colored bracelet of length k
and “replicating” it p times. Our lemma concludes that for p prime
Vo = Vi (mod p).
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In particular, V,e = Vj,.-1 when e > 1. Consequently, for p prime, and e nonnegative,
Voe =a (mod p).

Now consider the set S of permutations of {0,1,...,p — 1} with exactly one cycle; thus, |S| =
(p— 1)\ Define f: S — S by f((ao,a1,---,ap-1)) = (L +ao,1 +a1,...,1 + ap—_1), where addition
is done modulo p. For each 7 in S, fP(7) = w. For a satisfying 1 < a < p — 1 those permutations of
the form m, = (0,a,2a,3a,...,(p — 1)a) (with multiplication done modulo p) are fixed points of f
since f(m,) remains an “arithmetic progression.” Conversely, if 7 is a fixed point of f and 7(0) = a,
then 7 = f%(7) must send a to 2a and, in general, 7 = f*%(7) sends ka to (k + 1)a. Thus 7 = 7,
and f has exactly p — 1 fixed points. This establishes Wilson’s Theorem: If p is a prime, then

(p—1!=(p—1) (modp).
The same approach can be applied to the set S of k-element subsets of {0,1,...,p — 1}. Define
f:S—Shby f({ai,az2,...,ar}) ={14+a1,14as,...,1+ai}, where again addition is done modulo
p. When 1 < k < p — 1 there are no fixed points of f. Consequently, for p prime and k satisfying

(i) =0 (mod p).

We conclude with Lucas’s Theorem: For p prime, let n and k have base p notation n = Zizo b;p
and k=3 .-, cip*, where 0 < b;, ¢; < p. Then

(1)=TI(2) tmoan

Proof. Tt suffices to show (I;Zi;) = (Z) (:) (mod p), for 0 < r,s < p, and then proceed inductively.

Let S denote the set of ordered pairs (A4,v), where A is a binary p x n matrix and v is a binary
r X 1 vector, such that among the pn + r entries of A and v, exactly pk + s are equal to one. Hence

|S| = (’;Zi:) Let @ denote the p x p permutation matrix with nonzero entries ¢, = 1 and ¢; ;—1 = 1

for i =2,3,...,p. Thus QA has the same rows as A, each shifted “down” by one row.
Define f: S — S by f((4,v)) = (QA,v). Thus fP((4,v)) = (QPA,v) = (A,v). There are (})(%)

k/ \s
fixed points of f, consisting of those pairs (A, v) such that the first row of A contains exactly k ones,
the other rows of A are the same as the first row, and v contains exactly s ones in its r positions.

Note that if s > r, then (%) = 0. Thus, by our lemma, (2’;1:) = (1) (%) (mod p), as desired. o

For another fine combinatorial proof of Lucas’s theorem, see [3].
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