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1 Introduction

One of the oldest theorems about Fibonacci numbers states that for Fm > 1,

Fm|Fn if and only if m|n. (1)

Indeed, Edouard Lucas proved in his classic paper [4] that this theorem re-
mains true even when we replace the Fibonacci sequence with any Lucas sequence
of the first kind defined recursively by u0 = 0, u1 = 1 and for any all n ≥ 2
un = aun−1 + bun−2, where a and b are arbitrary integers. In 1970, Yuri Matija-
sevic̆ [5] proved that for Fm > 1,

F 2
m|Fmr if and only if Fm|r. (2)

which led to his solution to Hilbert’s 10th Problem.
In this paper, we first present combinatorial proofs of (1) and (2), then extend

our argument to characterize when F 3
m divides Fn. Next, we give a combinatorial

proof of

Fmr =
r∑

j=1

(
r

j

)
FjF

j
mF j−1

m−1,
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which leads to a characterization of when FL
m divides Fn for all L ≥ 1. Finally, we

generalize these results to any Lucas sequences of the first kind that are generated
by non-negative integers.

2 Divisibility by Fm, F 2
m and F 3

m

To introduce our main ideas, we begin with a combinatorial proof of statement
(1). It is well known [1, 7] that for n ≥ 0, Fn counts the number of ways to
tile a board of length n− 1 with squares and dominoes. Now suppose that m|n.
Thus Fn = Fmr counts the number of ways to tile a board of length mr − 1 with
squares and dominoes. Such a tiled board can be broken into r segments (called
supertiles) S1, S2, . . . , Sr by chopping the board immediately to the right of cells
m, 2m, 3m, . . . , (r− 1)m. Notice that this chopping can result in a domino being
split into two “half-dominoes” (not the same as two squares) whenever a domino
covers cells jm and jm + 1 for some 1 ≤ j ≤ r − 1. When this happens, we say
that supertile Sj is open on the right and that Sj+1 is open on the left. Otherwise
we say that Sj is closed on the right and Sj+1 is closed on the left. See Figure 1.

S1 S2 S3 Sr−1 Sr· · ·� -� -� -� -

1 m m + 1 2m2m + 1 · · · (r − 1)m rm− 1· · · · · · · · · · · · · · ·

Figure 1: A board of length rm − 1 (with a half-domino attached) can be split
into r supertiles of length m.

For convenience, we append a half-domino to the end of our board so that Sr is
open on the right. By doing so, all supertiles have length m, and this guarantees
the existence of at least one supertile Sj that is closed on the left and open on
the right. For 1 ≤ j ≤ r, the number of tilings where supertile Sj is the first
supertile of this form is F j−1

m+1FmF(r−j)m−1 since the first j − 1 supertiles can each
be tiled Fm+1 ways, Sj can be tiled Fm ways, a domino must cover cells jm and
jm + 1, and the remaining (r − j)m− 1 cells can be covered F(r−j)m−1 ways and
end with a half-domino. (A slightly modified argument is needed when j = r but
since F−1 = 1, the formula remains valid.) Altogether, we have

Fn = Fmr = Fm

r∑
j=1

F j−1
(m+1)F(r−j)m−1.
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Thus we have combinatorially demonstrated that if m|n, then Fm|Fn . For a
slightly different combinatorial proof, see [2].

To prove the converse statement, suppose n = mr + s, where 0 < s < m, and
Fm > 1. We apply the same argument as before, but now we end with a length
s supertile Sr+1. Adjusting the previous argument for this, we obtain

Fn = Fmr+s = F r
m+1Fs + Fm

r∑
j=1

F j−1
(m+1)F(r−j)m+s−1,

where the F r
m+1Fs term accounts for those tilings where supertiles S1, S2, . . . , Sr

are all closed on the left and right. Consequently, Fn ≡ F r
m+1Fs 6≡ 0 (mod Fm),

since Fm+1 is relatively prime to Fm and 0 < Fs < Fm.

A similar argument leads to divisibility criteria for F 2
m and F 3

m. By statement
(1), we need only consider situations where n = mr for some non-negative integer
r. Begin by observing that any tiling of length mr ending with a half-domino
must contain an odd number of supertiles that are closed on one end and open on
the other. The number of ways to create a tiling with 3 or more of these supertiles
is a multiple of F 3

m since the first 3 of these supertiles can each be independently
tiled in Fm ways. Thus to determine Fmr (mod F 2

m), we need only count those
tilings that have exactly one supertile Sj that is closed on the left and open on
the right and therefore have no supertiles that are closed on the right and open on
the left. All of the supertiles that precede Sj are necessarily closed on both sides
and all supertiles that come after Sj are necessarily open on both sides. If at least
one of the supertiles Si preceding Sj is to end with a square then Si and Sj can
each be independently tiled Fm ways; consequently the number of ways for this to
occur must be a multiple of F 2

m. Thus Fmr must be congruent (mod F 2
m) to the

number of tilings with only one half-open supertile Sj and where all supertiles
that precede it end with a domino. Since j can be chosen r ways, and all of
the supertiles, besides Sj can each be tiled Fm−1 ways, there are rFmF r−1

m−1 such
tilings. Since Fm is relatively prime to Fm−1, we conclude that Fmr is divisible by
F 2

m if and only if Fm divides r.
To determine divisibility by F 3

m, we proceed exactly as above, but with one
modification. This time we must also count those tilings with exactly one half-
open supertile Sj that is preceded by exactly one closed supertile Sk which ends
with a square. Thus for 1 ≤ i ≤ j − 1 and i 6= k, Si is closed and ends with a
domino. Since Sj and Sk can be chosen

(
r
2

)
ways and can each be tiled Fm ways,
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and since all other supertiles can each be tiled Fm−1 ways, it follows that

Fmr ≡ rFmF r−1
m−1 +

(
r

2

)
F 2

mF r−2
m−1 (mod F 3

m).

Factoring out F r−2
m−1 (which is relatively prime to Fm) and dividing everything

(including the modulus) by F 2
m, gives us the following theorem.

Theorem 1. F 3
m divides Fmr if and only if Fm divides

(
r
2

)
+ rFm−1

Fm
.

We point out that the quantity
(

r
2

)
+ rFm−1

Fm
is an integer if and only if Fm

divides r, i.e., when F 2
m divides Fn. Thus, our theorem is equivalent to saying

that Fm divides Fn if and only if n = mr for some integer r and Fm divides r and
Fm divides

(
r
2

)
+ rFm−1

Fm
. Notice that when r is a multiple of F 2

m then
(

r
2

)
+ rFm−1

Fm

is a multiple of Fm, resulting in the following corollary.

Corollary 2. For m, r ≥ 0, If F 2
m divides r, then F 3

m divides Fmr.

3 Divisibility by FL
m

Our general result will depend on the following theorem, [3] which we prove
combinatorially.

Theorem 3. For m, r ≥ 0,

Fmr =
r∑

j=1

(
r

j

)
FjF

j
mF r−j

m−1.

Proof. As in the proof of Theorem 1, Fmr counts the number of ways to tile a
board of length mr with squares and dominoes such that the last cell ends with
a half-domino. Such a tiled board can be broken into r supertiles S1, S2, . . . , Sr,
each of length m. We observe that supertiles can be partitioned into 5 types:

A) Closed on the left and open on the right,
B) Open on the left and closed on the right,
C) Closed on both sides and ending with a square,
D) Closed on both sides and ending with a domino, or
E) Open on both sides.
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The crucial observation here is that all supertiles of type A, B, or C have one
restricted cell and m − 1 cells that can be tiled freely in Fm ways. Supertiles of
type D or E have two restricted cells and m − 2 cells that can be tiled freely in
Fm−1 ways.

We claim that for 1 ≤ j ≤ r, the summand
(

r
j

)
FjF

j
mF r−j

m−1 counts the number
of tilings that have exactly j supertiles of type A, B, or C. To count such a tiling,
we must first select which supertiles will be of type A, B, or C. This can be done(

r
j

)
ways. Call these supertiles Si1 , . . . , Sij , listed from left to right. Next we must

designate which of these supertiles are of type A, which are of type B, and which
are of type C. We claim this can be done exactly Fj ways by creating a bijection
between all possible designations and the set T of length j tilings that end with a
half-domino. Specifically, let T be a tiling in T . For 1 ≤ k ≤ j, if cell k is covered
by the first half of a domino, then Sik is designated type A, if cell k is covered
by the second half of a domino, then Sik is designated type B, and if cell k is
covered by a square, then Sik is designated type C. (Notice that Si1 is guaranteed
to be of type A or C and that Sij is guaranteed to be of type A and that Sik is
closed on the right if and only if Sik+1

is closed on the left.) Thus, since |T | = Fj,
supertiles Si1 , . . . , Sij can be designated Fj ways. Once this is done, the other
supertiles of type D and E can be designated in precisely one way. (Specifically,
before Si1 , all supertiles must be of type D, all supertiles after Sij are of type E,
and if ik < i < ik+1, Si is of type D if and only if Sik is closed on the right.)
Finally, with the type of each supertile designated, the tiling can be constructed
in F j

mF r−j
m−1 ways.

As a simple consequence of this theorem, we obtain the following sufficient
condition.

Corollary 4. For L, m, r ≥ 0, If FL
m divides r, then FL+1

m divides Fmr.

Proof. By the previous theorem, it suffices to show that for each 1 ≤ j ≤ r, the

summand
r(r−1)···(r−j+1)FjF j

mF r−j
m−1

j!
is divisible by FL+1

m . Since FL
m|r, the numerator

is divisible by FL+j
m . For any prime factor p of Fm, the largest power of p to divide

j! is pα where α =
∑∞

k=1

⌊
j
pk

⌋
<

∑∞
k=1

j
pk ≤

∑∞
k=1

j
2k = j. Thus, since α ≤ j − 1,

the fraction is divisible by FL+1
m as desired.

For a necessary and sufficient condition, we utilize the following definition.
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Definition For m, r ≥ 1, let r0 = 0 and for k ≥ 1,

rk = Fk

(
r

k

)
+

Fm−1

Fm

rk−1. (3)

For example, r0 = 0, r1 = r, r2 =
(

r
2

)
+rFm−1

Fm
, r3 = 2

(
r
3

)
+

(
r
2

)
Fm−1

Fm
+r

(
Fm−1

Fm

)2

.

Continuing in this way, it is easy to see that for 0 ≤ k ≤ r,

rk =
k∑

j=1

Fj

(
r

j

) (
Fm−1

Fm

)k−j

for 0 ≤ k ≤ r.

When k > r,
(

r
k

)
= 0. Thus equation (3) implies

rk =

(
Fm−1

Fm

)k−r

r∗ for k ≥ r,

where

r∗ = rr =
r∑

j=1

Fj

(
r

j

) (
Fm−1

Fm

)r−j

.

Theorem 5. For L, m, r ≥ 1, FL
m|Fmr if and only if Fm|rL−1.

Proof. Using Theorem 3, and ignoring all factors of FL
m and higher, we have, for

1 ≤ L ≤ r + 1,

Fmr ≡
L−1∑
j=1

Fj

(
r

j

)
F j

mF r−j
m−1 (mod FL

m)

= FL−1
m F r+1−L

m−1

L−1∑
j=1

Fj

(
r

j

) (
Fm−1

Fm

)L−1−j

= FL−1
m F r+1−L

m−1 rL−1.

Thus, since Fm is relatively prime to Fm−1 we have, for 1 ≤ L ≤ r + 1,

FL
m|Fmr if and only if Fm|rL−1,

as desired.
To prove the theorem when L > r + 1, observe that Theorem 3 says Fmr =

F r
mr∗. Thus for L ≥ r + 1, FL

m|Fmr if and only if Fm| Fmr

F L−1
m

= r∗

F L−1−r
m

. And

since Fm is relatively prime to Fm−1, this is equivalent to the condition that

Fm|
(

Fm−1

Fm

)L−1−r

r∗ = rL−1 as desired.
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4 Lucas sequences

The results and arguments of the last section can be generalized to Lucas se-
quences of the first kind, with non-negative integer coefficients a and b. Here, un

is defined recursively by u0 = 0, u1 = 1, and for n ≥ 2 un = aun−1 + bun−2. It is
easy to see that un counts the number of colored tilings of a length n board ending
with a half-domino, where all tiles (except for the terminating half-domino) are
assigned a color. For each square, we have a choices of color, and for each domino,
we have b choices of color. Using this interpretation, we present a combinatorial
proof of the following generalization [6] of Theorem 3.

Theorem 6. For m, r ≥ 0,

umr =
r∑

j=1

(
r

j

)
uju

j
mbr−jur−j

m−1.

Proof. Here umr counts the number of colored tilings of length mr that end with
an uncolored half-domino. As in the proof of Theorem 3, we claim that for
1 ≤ j ≤ r,

(
r
j

)
uju

j
mbr−jur−j

m−1 counts the number of tilings that have exactly j

supertiles of type A, B, or C. There are
(

r
j

)
ways to choose which supertiles

Si1 , . . . , Sij will be of type A, B, or C. Next for any colored tiling T of length j
that ends with an uncolored half-domino, we proceed as follows. If the k-th cell
of T is covered by a colored square, then Sik is designated type C and its terminal
square is given the same color as the square on the k-th cell of T . The rest of
Sik can be tiled in um ways. If the k-th cell of T is covered by the beginning of a
half-domino, then Sik is designated type A, temporarily ending with an uncolored
half-domino. (Unless ik = r, the color of this last half-domino will be assigned
the same color as its second half. If ik = r, then this half-domino will remain
uncolored.) The rest of Sik can be tiled in um ways. If the k-th cell of T is covered
by the second half of a domino, then Sik is of type B, with its initial half-domino
given the same color as the domino ending on the k-th cell of T . The first half of
this half-domino, at the end of supertile Sik−1, will also be given the same color.
The rest of Sik can be tiled in um ways. Each of the remaining r − j supertiles
is designated to be either type D or type E (depending on the same criteria as
in the proof of Theorem 3.) If the supertile is of type D, then the color of its
terminating domino can be chosen in b ways, and the rest of it can be tiled in
um−1 ways. If the supertile is of type E, then the color of its initial half-domino
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can be chosen b ways, the color of its terminating half-domino is determined by its
second half, and the rest of the supertile can be tiled in um−1 ways. Summarizing,
for 1 ≤ j ≤ r, a colored tiling of length mr ending with an uncolored half-domino
with exactly j supertiles of type A,B, or C can be created

(
r
j

)
uju

j
m(bum−1)

r−j

ways, as desired.

Replacing F with u, Corollary 4 and its proof immediately generalize to

Corollary 7. If uL
m divides r, then uL+1

m divides umr.

Finally, suppose that our Lucas sequence has a and b relatively prime. Then,
inductively, for all m ≥ 1, um and bum−1 are relatively prime. For such a Lucas
sequence, define,
Definition For m, r ≥ 1, let r0 = 0 and for k ≥ 1,

rk = uk

(
r

k

)
+

bum−1

um

rk−1. (4)

After we substitute Fmr, Fj, Fm, and Fm−1 with umr, uj, um, and bum−1, respec-
tively, throughout the proof of Theorem 5, we immediately obtain the following
generalization.

Theorem 8. For L, m, r ≥ 1, uL
m|umr if and only if um|rL−1.
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