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Conclusions
Using the P, Q, and G conditions for N-representability, we used the variational method for finding the
2-RDM to calculate the ground state energy of several half-filled one-dimensional Hubbard chains with
periodic boundary conditions. As a two-electron basis, we used the pair states, which are eigenstates
of the reduced Hubbard Hamiltonian.
Comparisons between the variational and exact energies as a function of the dimensionless Coulomb
parameter U/t showed the greatest error when 7 ≤ U/t ≤ 8. In the limit as U/t → ∞, the variational
and exact energies converged in all the cases we studied. However, a direct comparison of the weight
functions shows that for several pair states there is significant deviation from the exact values with
increasing U/t. These pair states (many of which have an energy that approaches 0 as U/t increases)
do not have a large contribution to the energy calculation. However, this deviation suggests that while
the energy calculations are converging in the strongly coupled limit, some of the properties of the wave
functions are not.
When comparing the expectation values of an operator that measures double occupancy for the vari-
ational and exact wave functions, we found that they also converged in the large U/t limit. For
2 ≤ U/t ≤ 3 the variational results gave the most disagreement.
However, and most interestingly, the antiferromagnetic ordering of the two wave functions does not
converge in the strongly coupled limit. In fact, the difference between the two was a maximum in
this limit for all the half-filled cases studied. This difference appears to be partially attributable to the
weight functions for the pair states with energies near zero for large U/t.

Figure 4: Difference between the expectation value of the double occupancy operator
ζ = 1
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∑

i ni↑ni↓ with respect to the exact ground state and the ground state obtained
by the SDPA for various half-filled systems. At 2 ≤ U/t ≤ 3, the deviation between
the exact and SDP results is a maximum. As U/t → ∞, the magnitude of this
deviation approaches zero.

Comparison of Double Occupancy

Figure 3: Comparison of the expectation value of the antiferromagnetic ordering
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i+1) with respect to the exact ground state (solid lines) and the

ground state obtained through the variational 2-RDM method (dotted lines) for vari-
ous half-filled Hubbard systems. While Figure 2 shows that the error of the energies
diminishes as U/t gets large, the error of this property is at a maximum in the same
limit.

Comparison of Antiferromagnetism

Figure 2: Differences between the dimensionless exact ground state energies of var-
ious periodic half-filled Hubbard systems to the variational 2-RDM method using
the P, Q, and G conditions. The error is greatest when 7 ≤ U/t ≤ 8, an observation
which has been previously made [6]. As U/t→ ∞ the differences slowly decrease.

Energy Comparison

Figure 1: A comparison of the diagonal elements of Γ using exact diagonalization (left) and using the SDPA (right) for the case of 8 sites
at half-filling and periodic boundary conditions. The s = 0 weight functions are shown on top while the s = 1 weight functions are plotted
on bottom. In the case of the singlet states, at U/t = 0 only the lowest energy weight functions are nonzero. There are Λ = N = Ns = 8
high energy pair states, whose energies increase nearly linearly with U/t. The weight functions for these states are zero at U/t = 0 and
approach 0 as U/t → ∞. While the variational 2-RDM method appears to constrain these high energy states fairly well for all U/t, the
lowest energy states show some considerable disagreement as U/t increases.

Variational 2-RDMExact

Using these two-particle states, we can then diagonalize H′ to find both its eigenstates |φa〉 which satisfy the eigenvalue equation

H′|φa〉 = Ea|φa〉 (17)

and are also eigenstates of the total spin operator. These states |φa〉 are what we are referring to when we mention the pair
representation. As a many-body state we will use the ground state of H, thus simplifying (11) to become

εo =
∑

a

(EaΓ
a
a) . (18)

The 2-RDM appearing in this equation is now written in terms of the pair representation. Changing the 2-RDM used in the Q
and G constraint relations given earlier to this basis is not difficult, since the two representation are easily related by
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It is important to note that G can also be decomposed into smaller blocks, thus greatly reducing the number of constraints needed.

The Pair Representation
For the Γ and Q matrices, we will define the two-particle basis φ(s,m)
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With these states as a basis, H′, Γ, and Q are block diagonal. If the many-body state |ψ〉 we are inter-
ested in consists of an even number of electrons, these matrices consist of four blocks corresponding
to the (s,m) pairs (1, 1), (1, 0), (1,−1), and (0, 0). In the case of an odd number of electrons, there are
only three blocks, each with a different z-component of spin, m.

The Hubbard Hamiltonian
For our model we chose the one-dimensional Hubbard Hamiltonian, which in second quantization is
written as

H(t, U) = −t
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c
†
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From this definition, the reduced Hubbard Hamiltonian is
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)
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and 〈H〉 can be written as
〈H〉 = Tr

(

H′Γ
)

. (11)

Finally, without loss of generality we have constructed our many-body base states such that

N↑ −N↓ =

{
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(12)

N-Representability Conditions
Unfortunately, the 1- and 2-RDM constraints are not enough to guarantee that the solution will be
N-representable. Therefore, let us define the matrices Q and G as
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The P, Q, and G conditions state that Γ, Q, and G ≥ 0 (positive semidefinite). Due to the commutation
relations for the fermion operators, the Q and G matrices are related to the 1- and 2-RDM by
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Here we have used the fact that Q has the same antisymmetry property as Γ and thus restricted the
indices so that i < j and k < ` (due to its form, such a restriction cannot be placed upon G). These
relations for Q and G serve as additional constraints needed for N-representability. Also, it is important
to note that these conditions are independent of the system being studied. With these definitions, we
are now ready to define Y
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Semi-definite Programming
For our semi-definite programming problem, we used the general purpose SDPA code [7]. This code
is capable of solving either the primal or dual formulation of SDP. In this case, we chose the dual form

maximize F0 · Y

subject to Fi · Y = ci

where F0, Fi, and Y are real symmetric matrices and ci is a real constant. The notation A · B means
∑

ij

AijBij. In addition, Y ≥ 0 (positive semi-definite). If we make the substitution that F0 = −H′,

where H′ is the reduced Hubbard Hamiltonian [see below], then the maximization problem becomes a
minimization one.

The 1- and 2-RDM satisfy the following conditions:

1. Hermiticity
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The Method
In second quantization, any operator that consists solely of one- and two-body terms can be written as
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Then it follows that the expectation value of A with respect to any many-body state is
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where the 1- and 2-RDM are defined as
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and A′ is the reduced operator, defined as
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Introduction
Since electron interactions act pairwise, the energies of a many-body system can be found from a
knowledge of the elements of the two-particle density matrix (2-RDM) [1, 2]. Early attempts, assuming
a variational principle for the 2-RDM, resulted in energies significantly lower than the exact values. It
was discovered that the 2-RDM obtained in this manner could not be obtained from a many-body wave
function. The so-called N-representability problem is a set of conditions which are needed to ensure
that the 2-RDM is consistent with the N-particle wave function [3]. Of the known N-representability
conditions, the two-positivity conditions P and Q [3] as well as G [4] have received the most widespread
use. Several authors have used semi-definite programming (SDP) algorithms to formulate the determi-
nation of the ground state energy and the 2-RDM with N-representability constraints, obtaining very
good results for a variety of molecules [5, 6].
In this research, we use the one-dimensional Hubbard Hamiltonian, H, to analyze the constrained op-
timization technique in detail. We compare the ground state energies obtained with the SDP approach
with the exact energies and also analyze several properties of the exact and SDP results. By using
the pair-state basis – eigenstates of the two-particle reduced Hubbard Hamiltonian, H′ – we can both
simplify the SDP equations and obtain additional insight into the method. Results are presented as a
function of the U/t parameter, which is an indicator of the correlation strength.
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