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Outline
Motivation – Why solid electrolytes?
Computational  tools & reality checks; “first 

principles” calculations
Some examples based on crystalline materials

Li phosphorus oxynitrides (first developed at 
Oak Ridge National Laboratory)

Li thiophosphates
Other examples 

Summary and remaining challenges
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Motivation –
Why solid electrolytes?
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Materials components of a Li or Na ion  battery

or
Na+
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http://www.toyota-global.com/innovation/environmental_technology/keytech/

From Toyota Motor Company Website:
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Advantages
 Compatible and stable with 

high voltage cathodes and 
with Li metal anodes

Disadvantages
 Relatively low ionic conductivity 

(Compensated with the use of 
less electrolyte?)

 Lower total capacity

Demonstrated for LiNi0.5Mn1.5O4/LiPON/Li  
 10-6 m LiPON electrolyte layer achieved adequate conductivity 
 10,000 cycles* with 90% capacity retention

*1 cycle per day for 27 years

From Oak Ridge National Laboratory:
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Motivation: Paper by N. Kayama, et. al in Nature Materials 10, 682-686 (2011)
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Motivation: Paper by N. Kamaya, et. al in Nature Materials 10, 682-686 (2011)

R T

LiPON
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Motivation: Paper by N. Kamaya, et. al in Nature Materials 10, 682-686 (2011)

R T

Li7P3S11
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Motivation: Paper by N. Kamaya, et. al in Nature Materials 10, 682-686 (2011)

R T

Li7P3S11

b-Li3PS4
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Motivation: Paper by N. Kamaya, et. al in Nature Materials 10, 682-686 (2011)

R T

Li10GeP2S12
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Solid Electrolyte Families
Investigated in this Study:

LixPOyNz

LixPSy
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Computational  tools
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Summary of “first-principles” calculation methods

Exact Schrodinger equation:

({ },{ }) ({ },{ }) ({ },{ })a a a
i i iE    r R r R r RH


Electronic coordinates

Atomic coordinates

Born-Oppenheimer approximation
Born & Huang, Dynamical Theory of Crystal Lattices, Oxford (1954)

Nuclei Electrons

Approximate factorization:

({ },{ }) ({ }) ({ },{ })a a a
i iX   r R R r R

Nuclei Electrons

where

({ },{ }) ({ }) ({ },{ })a a a
i ir R R r RH H +H

Treated with classical mechanics Treated with density 
functional theory
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Density functional theory
Hohenberg and Kohn, Phys. Rev. 136 B864 (1964)
Kohn and Sham, Phys. Rev. 140 A1133 (1965)

 0 0Mean field approximation:  ({ }) ( ( ) ,{ })        a aU U R r R
Electron
density

Independent electron wavefunction

2
Kohn-Sham construction:    ( ) ( )    (  )   nK

n
S    rr r

Electrons
KS ( , ( ),{ }) ( ) ( )   a

n n n   r r R r rH



Exchange-correlation functionals:
LDA: J. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992)
GGA: J. Perdew, K. Burke, and M. Ernzerhof, PRL 77, 3865 (1996)
HSE06: J. Heyd, G. E. Scuseria, and M. Ernzerhof, JCP 118, 8207 (2003)
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More computational details:

 
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Numerical methods:
“Muffin-tin” construction:  Augmented Plane Wave developed 
by Slater  “linearized” version by Andersen:

J. C. Slater, Phys. Rev. 51 846 (1937)
O. K. Andersen, Phys. Rev. B 12 3060 (1975)  (LAPW)

Pseudopotential methods:
J. C. Phillips and L. Kleinman, Phys. Rev. 116 287 (1959) -- original idea
P. Blöchl, Phys. Rev. B. 50 17953 (1994) – Projector Augmented Wave (PAW) 
method

electron-nucleus electron-electron exchange-
correlation
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Ground state energy:   
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table and meta-stable structures

 

( ) ( )                      Self-consistent electron density

                                          One-electron energies; densities of states
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Outputs of calculations:
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R r RH  Normal modes 
of vibration
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Codes used for calculations

Function Code Website

Generate atomic datasets ATOMPAW http://pwpaw.wfu.edu

DFT; optimize structure PWscf
abinit

http://www.quantum-espresso.org
http://www.abinit.org

Structural visualization XCrySDen
VESTA

http://ww.xcrysden.org
http://jp-minerals.org/vesta/en/
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ATOMPAW Code for generating atomic datasets for PAW calculations
Holzwarth, Tackett, and Matthews, CPC 135 329 (2001)  http://pwpaw.wfu.edu
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Atomic PAW datasets:
Comparison with LAPW results 
for binding energy curves --
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Validation
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Li3PO4 crystals

(Pnma)

(Pmn21)
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Validation of calculations

A:  B. N. Mavrin et al,  J. Exp. Theor. Phys. 96,53 (2003); B: F. Harbach and F. Fischer, Phys. Status Solidi 
B 66, 237 (1974) – room temp.  C: Ref. B at liquid nitrogen temp.; D: L. Popović et al, J. Raman 
Spectrosc. 34,77 (2003). 
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Heats of formation – Experiment & Calculation
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Estimate of ionic conductivity assuming 
activated hopping

:
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Arrhenius activation energies –
Experiment and Calculation

1
2A m f

cal cal calE E E 
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What is meant by “first principles”?

A series of well-controlled approximations
 Born-Oppenheimer Approximation
 Density Functional Approximation
 Local density Approximation (LDA)
 Numerical method:  Projector Augmented Wave

Validation
 Lattice vibration modes
 Heats of formation
 Activation energies for lattice migration 
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How can computer simulations contribute
to the development of materials?

 Computationally examine known materials and predict 
new materials and their properties
 Structural forms
 Relative stabilities
 Direct comparisons of simulations and experiment
 Investigate properties that are difficult to realize 

experimentally 

Of particular interest in battery materials --
 Model ion migration mechanisms

 Vacancy migration
 Interstitial migration
 Vacancy-interstitial formation energies

 Model ideal electrolyte interfaces with anodes
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Systematic study of LiPON materials – LixPOyNz –
(Yaojun A. Du and N. A. W. Holzwarth, Phys. Rev. B 81, 184106 (2010) )

Typical composition of 
amorphous LiPON films
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Experimentally 
known structure

Computationally 
predicted structure
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Computationally predicted structure

Experimentally realized structure
SD-Li2PO2N Cmc21

Pbcm

Synthesis of Li2PO2N by 
Keerthi Senevirathne, 
Cynthia Day, Michael Gross, 
and Abdessadek Lachgar
(SSI 233, 95-101 (2013))
High temperature solid state 
synthesis using reaction:

1 1
2 2 5 3 5 2 25 5

Li O  P O  P N Li PO N  

Calculations have now 
verified that the SD structure 
is more stable than the s1

structure by 0.1 eV/FU.
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Comparison of synthesized Li2PO2N with Li2SiO3

SD-Li2PO2N (Cmc21) Li2SiO3 (Cmc21)

a=9.07 Å, b=5.40 Å, c=4.60 Å a=9.39 Å, b=5.40 Å, c=4.66 Å 
K.-F. Hesse, Acta Cryst. B33, 901 (1977)

NOPLi Si
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Electronic band structure of SD-Li2PO2N
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More details of SD-Li2PO2N structure

Ball and stick model

c

b

NOPLi

Isosurfaces (maroon) of 
charge density of states 
at top of valence band, 
primarily p states on N.
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Vibrational spectrum of SD-Li2PO2N
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Stability of SD-Li2PO2N in air

Note:  no structural changes were observed while heating in 
vacuum up to 1050o C.

Thermogravimetric analysis 
curve in air

)g(2NO(s)OPLi)g(O
2

5
N(s)POLi2 724222 
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Ionic conductivity of SD-Li2PO2N

NEB analysis of Em

(vacancy mechanism)

6  S/cm   at 81 0  C0 os -

1
2

0.4 eV; 2 eV

1.4 eVA f

m f

m

E

E E E

E 

  

Sample has appreciable 
population of vacancies
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Summary of the Li2PO2N  story
 Predicted on the basis of first principles theory
 Subsequently, experimentally realized by Keerthi

Seneviranthe and colleagues;   generally good 
agreement between experiment and theory

 Ion conductivity properties not (yet) competitive
 Crystalline SD-Li2PO2N (Cmc21) is quite different from 

the amorphous LiPON electrolyte developed at ORNL
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Other electrolyte materials -- thiophosphate
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Systematic study of LixPSy materials – (N. D. Lepley and N. A. W. 
Holzwarth, J. Electrochem. Soc. 159,  A538 (2012), Phys. Rev. B 88, 
104103 (2013) )
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Comparison of some lithium 
phosphates and thiophosphates

Crystallizes (experimentally and

 computationally) into 1 structureP

Experimentally amorphous;

computationally metastable

in 1 structureP
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Some lithium thiophosphate
crystal structures

Experimentally amorphous;

computationally metastable

in 1 structureP

Experimentally and computationally

metastable in 1 structureP
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Li         P           S

Vacancy migration analysis from NEB results 
for Li7P3S11:

1
2

0.15 eV; 0 eV

0.15 eV

m f

mA fE E

EE

E

 

  

Experiment -- A Hayashi et al., J. Solid State Electrochem. 14, 1761 (2010):
310  S/cm              E2 3 0.12 0.18 eVAs - -  -

Lepley & Holzwarth, JECS 159, A538-A547 (2012) 
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From ORNL:  Experiment on electrolyte  Li3PS4
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b-Li3PS4

-Li3PS4

Li         P           S

1
2

0.5 

0.3 eV;  0.8 eV

0.7 eV 

   eV

m f

m f

ex

A

p

E E

E E E

E





 

 
1
2

0.3 eV;  0.0 eV

0.3 eV  

    0.4 0.5 eV

m f

A m f

exp

E E

E E E

E  -



 



Lepley, Du,  and Holzwarth, PRB 88, 104103 (2013)
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Summary of the LixPSy story

 Simulations verify that thiophosphates have 
better ion mobility properties than their 
phosphate analogs

 Meta-stable crystalline Li7P3S11 has been shown to 
have particularly favorable ion migration pathways

 - and b-Li3PS4 have very similar structures, but 
simulations show their ion mobilities to be 
different. 
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Models of Idealized Interfaces
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Crystal structure of bulk Li3PS4 – -form 
Pmn21 (#31)

Note:  Li3PS4 is also found in
the  b-form with Pnma (#62)
structure
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-Li3PS4 [0 1 0] surface 
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Simulations of ideal -Li3PS4 [0 1 0] surface
in the presence of Li

Initial configuration: Computed optimized 
structure:
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Computational counter example –
stable interface:
Li/b-Li3PO4
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Computational counter example –
stable interface:
Li/SD-Li2PO2N
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 
 

Within any given periodic simulation cell with  units of material  and with

 units of material , we can define an interface energy:

 
, , ,

, , =
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ab a b a a b b

ab a b
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E A n n n E En
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
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 



bulk energies

area of interface  
within supercell

 

In order approximately remove the effects of lattice strain:

  Design the supercell to be commenserate with lattice 

  Now the strain will scale with the amount of material 

      , 

 

,ab a b abn n

a

b

 W  







  lim
bn sW 

a b

Quantitative study of interfaces –
(Lepley & Holzwarth, PRB 92 214201 (2015)) 



8/17/2016 IMRC 2016 54

It is convenient to model the interface between 
a solid electrolyte and solid electrode in the 
slab geometry using a periodic simulation cell:

supercell repeat unit

ideal interfaces
-Li3PO4Li Li

Li           P           O   
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   lim

Lepley's linear equation for the interface 

energy:   , , ab a b ab bn n n  sW  W   

 lim
ab W 

Li           P           O   
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System (meV/Å2) s (meV/Å2)

Li2O[110]/Li(W1) 30 6.1

Li2O[110]/Li(W2) 26 0.2

Li2S[110]/Li(W3) 19 0.2

Li2S[100]/Li(W4) 19 0.0

-Li3PO4 [010]/Li(W3) 31 0.0

-Li3PS4 [010]/Li2S [110] 16 1.0

-Li3PS4 [010]/Li -216 -0.1

lim
ab

Some interface energy results
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-Li3PS4 [010]/Li2S [110] Li           P           S   

Li2S Li2S-Li3PS4

Stable interface;  composite electrolyte system
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-Li3PS4 [010]/Li

-Li3PS4 LiLi

Li           P           S   

Initially unstable interface;   (meta)-stable buffer layer formed
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Partial density of states analysis of unstable 
Li3PS4/Li interface:

P+5

P-3
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Bulk reactions from estimated heats of formation

Decomposition at interface

(Meta-)stable interface
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Evidence of kinetic barrier at
Li3PO4/Li interface

NEB reaction coordinate
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Summary of ideal interface story
 A practical scheme was developed to compute an 

intensive measure of the interface interaction       , 
explicitly accounting for the effects of lattice stain.

 Discussed bulk reactivity as related to the interface 
stability of the interfaces of 
 Li3PO4/Li  (having a significant kinetic barrier to 

decomposition) 
 Li3PS4/Li (having localized decomposition).

int
ab
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Other thiophosphate compounds; 
comparison of Li4P2S6 and Na4P2S6

Zachary D. Hood, Cameron Kates, Melanie Kirkham, Shiba Adhikari, Chengdu Liang, and 
N. A. W. Holzwarth, Solid State Ionics 284, 61-70 (2015) 

Larry E. Rush Jr. and N.A.W. Holzwarth, Solid State Ionics 286, 45-50 (2016) 
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R. Mercier, J.P. Malugani, B. Fahys, J. Douglade, G. Robert, J. Solid State Chem. 43, 151–162 (1982).
A. Kuhn, R. Eger, J. Nuss, B.V. Lotsch, Z. Anorg. Allg. Chem. 640, 689–692 (2014).

c

S

P

Li/Na

2.3 Å

2.1 Å

High temperature processing of Li and Na 
thiophosphates have shown to produce dimer 
units (P2S6)-4 (hexathiohypodiphosphates):
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S

P

Li

Mercier’s analysis of Li4P2S6

-- disorder in P-P placements
Crystal Space Group    P63/mcm  (#193)
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Structural variation can be mapped on to a two-dimensional 
hexagonal lattice with each P configuration  taking P    or P     
settings; Li and S configurations fixed

S

P

Li

a

Mercier’s analysis of Li4P2S6
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Examples:

Structure “b”

Structure “c”

Structure “d” DE = 0

DE = 0

DE = 0.03 eV

100%   P

50%   P
50%   P

50%   P
50%   P

S

P

Li

31P m

Pnnm

Pnma

Two model 
configurations 
of disordered 
ground state 
structure

Mercier’s analysis of Li4P2S6
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Structure of Na4P2S6:
Kuhn et al., ZAAC 640, 689-692 (2014) synthesized single 
crystals with a monoclinc structure having space group C2/m
with similarities to the trigonal structure with           space group31P m

Structural comparison – c-axis projection 

31P m 2 /C m

Na
P
S

a

a x c
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Structural comparison – view including c-axis 

31P m 2 /C m

Na4P2S6
Na
P
S

21

c

a

69
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31P m 2 /C m

Structural comparison – view including c-axis 

Na4P2S6

Na
P
S

c

a x c



8/17/2016 IMRC 2016 71

Results for Na4P2S6:
Calculated heats of formation (eV per formula unit) 
for Na4P2S6 and Li4P2S6 in 4 structural models

Na4P2S6 Li4P2S6

Kuhn structure -11.47 eV -12.07 eV

Structure “b” -11.47 eV -12.42 eV

Structure “c” -11.56 eV -12.46 eV

Structure “d” -11.56 eV -12.46 eV

Models of 
disordered
Mercier
structure Calculations find the  most stable structure for 

both  Na4P2S6 and Li4P2S6 to be the disordered 
Mercier structure, suggesting that the Kuhn 
structure is meta-stable.
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Note: simulations 
scaled by 102% 
to compensate 
for systematic 
LDA error.

Extra peaks

Simulations consistent 
with incoherent average 
over all P and P            
configurations

Comparison of
X-ray data  for Li4P2S6

with simulations 
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Ionic conductivity and Activation Energy for Li4P2S6

2.38 x 10-7 S/cm at 25˚C and 2.33 x 10-6 S/cm at 100˚C 
Li4P2S6 pressed pellets with blocking (Al/C) electrodes

Li/ Li4P2S6 /Li cells could not be cycled
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Comparison of vacancy migration of Na4P2S6 and Li4P2S6

31P m 2 /C m

Na/Li
P
S
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31P m 2 /C m

Minimum ion vacancy migration energies

Na4P2S6 0.3 eV 0.3 eV

Li4P2S6 0.5 eV 0.1 eV

31P m 2 /C m

Na/Li
P
S

2575



8/17/2016 IMRC 2016 76

Conclusions on studies of Li4P2S6 and Na4P2S6 :
 Li4P2S6 and Na4P2S6 have interesting structural properties; 

simulations find the  most stable structure for both to be 
the disordered Mercier structure, suggesting that the Kuhn 
structure is meta-stable.

 Experimental structural studies for Li4P2S6 agree with the 
simulations; material is found to be remarkably 
temperature independent and thermally stable relative to 
other thio-phosphates.

 Measurements find Li4P2S6 to have low ionic conductivity; 
simulations suggest that Na4P2S6 may have more favorable 
ionic conductivity.

 Models of ideal Li4P2S6/Li interfaces find broken P—S bonds;
Na4P2S6/Na interfaces in the Kuhn structure may be slightly 
more stable
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Additional thoughts

 Limitations of first principles modeling
 Small simulation cells
 Zero temperature

 Possible extensions
 Develop approximation schemes for treatment 

of larger supercells
 Use molecular dynamics and/or Monte Carlo 

techniques
 Ideal research effort in materials includes close 

collaboration of both simulations and experimental 
measurements.

 For battery technology, there remain many 
opportunities for new materials development.


