Simulations of Idealized Solid Electrolytes for Solid State Battery Designs* # N. A. W. Holzwarth** Department of Physics Wake Forest University, Winston-Salem, NC, USA, 27109 *Supported by NSF Grant DMR-1507942, WFU's DEAC cluster, and Center for Energy, Environment, and Sustainability. **With help from: Nicholas Lepley (WFU Ph. D., Dec. 2015), Ahmad Al-Qawasmeh, Jason Howard, and Larry Rush (WFU graduate students), Dr. Yaojun Du (former Postdoc), colleagues from the WFU chemistry department – Dr. Keerthi Senevirathne (currently at Florida A & M U.), Dr. Cynthia Day, Professor Michael Gross, Professor Abdessadek Lachgar, and Zachary Hood (currently at Georgia Tech and ORNL), and Professor Jennifer Aitken from Duquesne U. # **Outline** - ➤ Motivation Why solid electrolytes? - ➤ Computational tools & reality checks; "first principles" calculations - > Some examples based on crystalline materials - ➤ Li phosphorus oxynitrides (first developed at Oak Ridge National Laboratory) - **➤** Li thiophosphates - **≻**Other examples - Summary and remaining challenges # Motivation – Why solid electrolytes? ## Materials components of a Li or Na ion battery 8/17/2016 4 #### From Toyota Motor Company Website: # Expansion of battery development Toyota is conducting wide-ranging development of next-generation batteries. http://www.toyota-global.com/innovation/environmental_technology/keytech/ #### From Oak Ridge National Laboratory: www.MaterialsViews.com Adv. Energy Mater. 2015, 5, 1401408 ____ DOI: 10.1002/aenm.201401408 Solid Electrolyte: the Key for High-Voltage Lithium Batteries Juchuan Li,* Cheng Ma, Miaofang Chi, Chengdu Liang, and Nancy J. Dudney* #### **Advantages** high voltage cathodes and with Li metal anodes #### **Disadvantages** - Compatible and stable with Relatively low ionic conductivity (Compensated with the use of less electrolyte?) - Lower total capacity # Demonstrated for LiNi_{0.5}Mn_{1.5}O₄/LiPON/Li - > 10⁻⁶ m LiPON electrolyte layer achieved adequate conductivity - > 10,000 cycles* with 90% capacity retention - *1 cycle per day for 27 years Figure 3 | Thermal evolution of ionic conductivity of the new $Li_{10}GeP_2S_{12}$ phase, together with those of other lithium solid electrolytes, organic liquid electrolytes, polymer electrolytes, ionic liquids and gel electrolytes^{3-8,13-16,20,22}. The new $Li_{10}GeP_2S_{12}$ exhibits the highest lithium ionic conductivity (12 m S cm⁻¹ at 27 °C) of the solid lithium conducting membranes of inorganic, polymer or composite systems. Because organic electrolytes usually have transport numbers below 0.5, inorganic lithium electrolytes have extremely high conductivities. Figure 3 | Thermal evolution of ionic conductivity of the new $Li_{10}GeP_2S_{12}$ phase, together with those of other lithium solid electrolytes, organic liquid electrolytes, polymer electrolytes, ionic liquids and gel electrolytes^{3-8,13-16,20,22}. The new $Li_{10}GeP_2S_{12}$ exhibits the highest lithium ionic conductivity (12 m S cm⁻¹ at 27 °C) of the solid lithium conducting membranes of inorganic, polymer or composite systems. Because organic electrolytes usually have transport numbers below 0.5, inorganic lithium electrolytes have extremely high conductivities. Figure 3 | Thermal evolution of ionic conductivity of the new $Li_{10}GeP_2S_{12}$ phase, together with those of other lithium solid electrolytes, organic liquid electrolytes, polymer electrolytes, ionic liquids and gel electrolytes^{3-8,13-16,20,22}. The new $Li_{10}GeP_2S_{12}$ exhibits the highest lithium ionic conductivity (12 m S cm⁻¹ at 27 °C) of the solid lithium conducting membranes of inorganic, polymer or composite systems. Because organic electrolytes usually have transport numbers below 0.5, inorganic lithium electrolytes have extremely high conductivities. Figure 3 | Thermal evolution of ionic conductivity of the new $Li_{10}GeP_2S_{12}$ phase, together with those of other lithium solid electrolytes, organic liquid electrolytes, polymer electrolytes, ionic liquids and gel electrolytes^{3-8,13-16,20,22}. The new $Li_{10}GeP_2S_{12}$ exhibits the highest lithium ionic conductivity (12 m S cm⁻¹ at 27 °C) of the solid lithium conducting membranes of inorganic, polymer or composite systems. Because organic electrolytes usually have transport numbers below 0.5, inorganic lithium electrolytes have extremely high conductivities. Figure 3 | Thermal evolution of ionic conductivity of the new $Li_{10}GeP_2S_{12}$ phase, together with those of other lithium solid electrolytes, organic liquid electrolytes, polymer electrolytes, ionic liquids and gel electrolytes^{3-8,13-16,20,22}. The new $Li_{10}GeP_2S_{12}$ exhibits the highest lithium ionic conductivity (12 m S cm⁻¹ at 27 °C) of the solid lithium conducting membranes of inorganic, polymer or composite systems. Because organic electrolytes usually have transport numbers below 0.5, inorganic lithium electrolytes have extremely high conductivities. # **Computational tools** #### Summary of "first-principles" calculation methods Exact Schrödinger equation: Electronic coordinates Atomic coordinates $$\mathcal{H}(\{\mathbf{r}_i\}, \{\mathbf{R}^a\}) \Psi_{\alpha}(\{\mathbf{r}_i\}, \{\mathbf{R}^a\}) = E_{\alpha} \Psi_{\alpha}(\{\mathbf{r}_i\}, \{\mathbf{R}^a\})$$ where $$\mathcal{H}(\{\mathbf{r}_i\}, \{\mathbf{R}^a\}) = \mathcal{H}^{\text{Nuclei}}(\{\mathbf{R}^a\}) + \mathcal{H}^{\text{Electrons}}(\{\mathbf{r}_i\}, \{\mathbf{R}^a\})$$ Born-Oppenheimer approximation Born & Huang, Dynamical Theory of Crystal Lattices, Oxford (1954) Approximate factorization: $$\Psi_{\alpha}(\{\mathbf{r}_{i}\}, \{\mathbf{R}^{a}\}) = X_{\alpha}^{\text{Nuclei}}(\{\mathbf{R}^{a}\}) \Upsilon_{\alpha}^{\text{Electrons}}(\{\mathbf{r}_{i}\}, \{\mathbf{R}^{a}\})$$ Treated with classical mechanics Treated with density functional theory # Electronic Schrödinger equation: $$\mathcal{H}^{\text{Electrons}}(\{\mathbf{r}_i\}, \{\mathbf{R}^a\})\Upsilon_{\alpha}^{\text{Electrons}}(\{\mathbf{r}_i\}, \{\mathbf{R}^a\}) = U_{\alpha}(\{\mathbf{R}^a\})\Upsilon_{\alpha}^{\text{Electrons}}(\{\mathbf{r}_i\}, \{\mathbf{R}^a\})$$ $$\mathcal{H}^{\text{Electrons}}(\{\mathbf{r}_i\}, \{\mathbf{R}^a\}) = -\frac{\hbar^2}{2m} \sum_{i} \nabla_i^2 - \sum_{a,i} \frac{Z^a e^2}{|\mathbf{r}_i - \mathbf{R}^a|} + \sum_{i < j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}$$ For electronic ground state: $\alpha \Rightarrow 0$ #### Density functional theory Hohenberg and Kohn, *Phys. Rev.* **136** B864 (1964) Kohn and Sham, *Phys. Rev.* **140** A1133 (1965) Mean field approximation: $U_0(\{\mathbf{R}^a\}) \Rightarrow U_0(\{\rho(\mathbf{r})\}, \{\mathbf{R}^a\})$ Electron Kohn-Sham construction: $\rho(\mathbf{r}) \approx \rho_{KS}(\mathbf{r}) = \sum_{n} |\psi_n(\mathbf{r})|^2$ density $$\mathcal{H}_{KS}^{Electrons}(\mathbf{r}, \rho(\mathbf{r}), {\mathbf{R}^a}) \psi_n(\mathbf{r}) = \varepsilon_n \psi_n(\mathbf{r})$$ Independent electron wavefunction #### More computational details: $$\mathcal{H}_{KS}^{\text{Electrons}}(\mathbf{r}, \rho(\mathbf{r}), \{\mathbf{R}^a\}) = -\frac{\hbar^2 \nabla^2}{2m} + \sum_{a} \frac{-Z^a e^2}{|\mathbf{r} - \mathbf{R}^a|} + e^2 \int d^3 r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + V_{xc}(\rho(\mathbf{r}))$$ electron-nucleus electron-electron exchange-correlation functionals: #### Exchange-correlation functionals: LDA: J. Perdew and Y. Wang, Phys. Rev. B **45**, 13244 (1992) GGA: J. Perdew, K. Burke, and M. Ernzerhof, PRL 77, 3865 (1996) HSE06: J. Heyd, G. E. Scuseria, and M. Ernzerhof, JCP **118**, 8207 (2003) #### Numerical methods: "Muffin-tin" construction: Augmented Plane Wave developed by Slater → "linearized" version by Andersen: - J. C. Slater, Phys. Rev. **51** 846 (1937) - O. K. Andersen, Phys. Rev. B **12** 3060 (1975) (LAPW) #### Pseudopotential methods: J. C. Phillips and L. Kleinman, Phys. Rev. 116 287 (1959) -- original idea P. Blöchl, Phys. Rev. B. 50 17953 (1994) – Projector Augmented Wave (PAW) method 8/17/2016 **IMRC 2016** 16 Ground state energy: $$U_0(\{\rho(\mathbf{r})\},\{\mathbf{R}^a\})$$ ⇒ Determine formation energies $$\min_{\mathbf{R}^a\}} \left(U_0(\{\rho(\mathbf{r})\}, \{\mathbf{R}^a\}) \right)$$ ⇒ Determine structural parameters Stable and meta-stable structures $$\rho_{KS}(\mathbf{r}) = \sum_{n} \left| \psi_{n}(\mathbf{r}) \right|^{2}$$ $$\left\{ \varepsilon_{n} \right\}$$ ⇒ Self-consistent electron density ⇒ One-electron energies; densities of states Nuclear Hamiltonian (usually treated classically) $$\mathcal{H}^{\text{Nuclei}}\left(\{\mathbf{R}^a\}\right) = \sum_{a} \frac{\mathbf{P}^{a2}}{2M^a} + U_0(\{\rho(\mathbf{r})\}, \{\mathbf{R}^a\})$$ \longrightarrow Normal modes of vibration # **Codes used for calculations** | Function | Code | Website | |--------------------------|-------------------|--| | Generate atomic datasets | ATOMPAW | http://pwpaw.wfu.edu | | DFT; optimize structure | PWscf
abinit | http://www.quantum-espresso.org
http://www.abinit.org | | Structural visualization | XCrySDen
VESTA | http://ww.xcrysden.org
http://jp-minerals.org/vesta/en/ | #### ATOMPAW Code for generating atomic datasets for PAW calculations Holzwarth, Tackett, and Matthews, CPC 135 329 (2001) http://pwpaw.wfu.edu ATOMPAW **INFO** DATASETS CONTRIBUTERS **CONTACT INFO** NAWH Web PHYSICS Web WFU Web # **ATOMPAW** #### Download source code and example files: - atompaw-4.0.0.13.tar.gz (5.4mb) 2/15/2016 Marc Torrent introduced improvements to XML output for abinit and new option for command line determination of version. MT also prepared some notes in text format or in PDF format to install atompaw under MacOS. In addition, NH made some slight changes to the UPF output for Quantum Espresso towards compatibility with libxc. - atompaw-3.1.0.3.tar.gz (3.8mb) January 2014 Older version of atompaw with contributions from Marc Torrent and Francois Jollet as well as several others. - <u>pwpaw_2.4.tgz</u> (0.2 mb) Updated 05/12/2010 version of *pwpaw* with very minor changes to accomodate changes to input files generated by new *atompaw* output files; also includes a BSD license file. # Atomic PAW datasets: Comparison with LAPW results for binding energy curves -- # **Validation** # Li₃PO₄ crystals γ -Li₃PO₄ # Raman spectra – Experiment & Calculation A: B. N. Mavrin et al, J. Exp. Theor. Phys. **96**,53 (2003); B: F. Harbach and F. Fischer, Phys. Status Solidi B **66**, 237 (1974) – room temp. C: Ref. B at liquid nitrogen temp.; D: L. Popović et al, J. Raman Spectrosc. **34**,77 (2003). ### **Heats of formation – Experiment & Calculation** Table 1. Calculated heats of formation for Li phosphates, phospho-nitrides, and thiophosphates and related materials. The structural designation uses the the notation defined in the International Table of Crystallography⁸⁵ based on structural information reported in the International Crystal Structure Database.⁸⁶ The heats of formation ΔH (eV/FU) are given in units of eV per formula unit. When available from Ref. [31] and [32] experiment values are indicated in parentheses. Those indicated with "*" were used fitting the O and N reference energies as explained in the text. | Material | Structure | $\Delta H \; (eV/FU)$ | - | | | |---|---------------------|-----------------------|---------------------------------|----------------------|--------------------| | β-Li ₃ PO ₄ | $Pmn2_1$ (#31) | -21.23 | Material | Structure | $\Delta H (eV/FU)$ | | γ -Li ₃ PO ₄ | Pnma (#62) | -21.20 (-21.72*) | N_2O_5 | $P6_3/mmc$ (#194) | - 0.94 (- 0.45*) | | γ -Li ₃ PS ₄ | $Pmn2_1$ (#31) | - 8.37 | P_3N_5 | C2/c (#15) | - 3.02 (- 3.32*) | | β -Li ₃ PS ₄ | Pnma~(#62) | - 8.28 | h - P_2O_5 | R3c~(#161) | -15.45 (-15.53*) | | | | | o-P ₂ O ₅ | Fdd2 (#43) | -15.78 | | $\text{Li}_4\text{P}_2\text{O}_6$ | $P\bar{3}1m~(#162)$ | -29.72 | P_2S_5 | $P\bar{1}$ (#2) | - 1.93 | | $\text{Li}_4\text{P}_2\text{O}_7$ | $P\bar{1}$ (#2) | -33.97 | P_4S_3 | Pnma~(#62) | - 2.45 (- 2.33) | | $\text{Li}_5\text{P}_2\text{O}_6N$ | $P\bar{1}$ (#2) | -33.18 | SO_3 | $Pna2_1$ (#33) | - 4.84 (- 4.71*) | | $\text{Li}_4\text{P}_2\text{S}_6$ | $P\bar{3}1m~(#162)$ | -12.42 | | | | | $\text{Li}_4\text{P}_2\text{S}_7$ | $P\bar{1}$ (#2) | -11.59 | Li_3N | $P6/mmm \ (#191)$ | - 1.60 (- 1.71*) | | | | | Li_2O | $Fm\bar{3}m~(\#225)$ | - 6.10 (- 6.20*) | | $\text{Li}_7\text{P}_3\text{O}_{11}$ | $P\bar{1}$ (#2) | -54.84 | Li_2O_2 | $P6_3/mmc~(#194)$ | - 6.35 (- 6.57*) | | $\text{Li}_7\text{P}_3\text{S}_{11}$ | $P\bar{1}$ (#2) | -20.01 | Li_3P | $P6_3/mmc~(#194)$ | - 3.47 | | | | | Li_2S | $Fm\bar{3}m~(\#225)$ | - 4.30 (- 4.57) | | $LiPO_3$ | P2/c~(#13) | -12.75 | Li_2S_2 | $P6_3/mmc~(#194)$ | - 4.09 | | $LiPN_2$ | $I\bar{4}2d~(#122)$ | - 3.65 | | | | | $s1\text{-Li}_2PO_2N$ | Pbcm~(#57) | -12.35 | $LiNO_3$ | $R\bar{3}c~(#167)$ | - 5.37 (- 5.01*) | | SD-Li ₂ PO ₂ N | $Cmc2_1$ (#36) | -12.47 | Li_2SO_4 | $P2_1/c$ (#14) | -14.63 (-14.89*) | | SD-Li ₂ PS ₂ N | $Cmc2_1$ (#36) | - 5.80 | | | | # Estimate of ionic conductivity assuming activated hopping #### Schematic diagram of minimal energy path Approximated using NEB algorithm^a – "Nudged Elastic Band" ^aHenkelman and Jónsson, JCP 113, 9978 (2000) #### Arrhenius relation $$\sigma \cdot T = K e^{-E_A/kT}$$ From: Ivanov-Shitz and co-workers, Cryst. Reports 46, 864 (2001): **Fig. 2.** Temperature dependences of conductivity in γ -Li₃PO₄: (*1*–3) for single crystals measured along the (*1*) a-axis, (*2*) b-axis, (*3*) c-axis and (*4*, 5) for a polycrystal (*4*) according to [4, 5] and (5) according to [7]. $$E_A = 1.14, 1.23, 1.14, 1.31, 1.24 \text{ eV for}$$ $1,2,3,4,5, \text{ respectively.}$ # **Arrhenius activation energies – Experiment and Calculation** Table 3. Calculated migration energies $(E_m^{\rm cal})$ for Li ion vacancies (vac) and interstitials (int), vacancy-interstitial formation energies $(E_f^{\rm cal})$, and corresponding the activation energies $(E_A^{\rm cal})$ for crystalline materials computed using the NEB method in idealized supercells. When available, experimental activation energies $E_A^{\rm exp}$ are also listed together with additional information including the literature reference indicated in [] brackets. For γ -Li₃PO₄, results for different crystallographic directions are quoted to compare with single crystal experiment; in other cases, only the minimum energies are given. All energies are given in eV. | | vac | int | | $E_{A}^{cal} \approx E_{m}^{c}$ | | | |---|----------------------|----------------------|----------------------|---------------------------------|--------------------|----------------------| | Material | E_m^{cal} | E_m^{cal} | E_f^{cal} | E_A^{cal} | E_A^{exp} | Reference | | β -Li ₃ PO ₄ | 0.7 | 0.4 | 2.1 | 1.4 | | | | γ -Li ₃ PO ₄ | 0.7, 0.7 | 0.4, 0.3 | 1.7 | 1.3, 1.1 | 1.23, 1.14 | (sngl. cryst.) [100] | | $\text{Li}_{2.88}\text{PO}_{3.73}\text{N}_{0.14}$ | | | | | 0.97 | (poly cryst.) [58] | | $\text{Li}_{3.3}\text{PO}_{3.9}\text{N}_{0.17}$ | | | | | 0.56 | (amorphous) [58] | | $\text{Li}_{1.35}\text{PO}_{2.99}\text{N}_{0.13}$ | | | | | 0.60 | (amorphous) [101] | | ${ m LiPO_3}$ | 0.6 | 0.7 | 1.2 | 1.2 | 1.4 | (poly cryst.) [97] | | | | | | | 0.76 - 1.2 | (amorphous) [97] | | $LiPN_2$ | 0.4 | | $^{2.5}$ | 1.7 | 0.6 | (poly cryst.) [99] | | SD -Li $_2$ PO $_2$ N | 0.4 | 0.8 | 2.0 | 1.4 | 0.6 | (poly cryst.) [52] | | γ -Li ₃ PS ₄ | 0.3 | | 0.8 | 0.7 | 0.5 | (poly cryst.) [102] | | β -Li ₃ PS ₄ | 0.2 | | 0.0 | 0.2 | 0.4 | (nano cryst.) [103] | | $\mathrm{Li}_{7}\mathrm{P}_{3}\mathrm{S}_{11}$ | 0.2 | 0.5 | 0.0 | 0.2 | 0.1 | (poly cryst.) [76] | 0/1//ZUIU IIVINC ZUIU ZU # **➤** What is meant by "first principles"? | A series of well-controlled approximations | |--| | Born-Oppenheimer Approximation | | Density Functional Approximation | | Local density Approximation (LDA) | | ☐ Numerical method: Projector Augmented Wave | # **Validation** | Lattice vibration modes | |---| | Heats of formation | | Activation energies for lattice migratior | # How can computer simulations contribute to the development of materials? - Computationally examine known materials and predict new materials and their properties - Structural forms - Relative stabilities - Direct comparisons of simulations and experiment - Investigate properties that are difficult to realize experimentally Of particular interest in battery materials -- - Model ion migration mechanisms - Vacancy migration - Interstitial migration - Vacancy-interstitial formation energies - Model ideal electrolyte interfaces with anodes Systematic study of LiPON materials – $\text{Li}_{x}\text{PO}_{y}\text{N}_{z}$ – (Yaojun A. Du and N. A. W. Holzwarth, Phys. Rev. B 81, 184106 (2010)) Fig. 7. Ball and stick diagrams for LiPO₃ in the P2/c structure (20 formula units per unit cell) and s1-Li₂PO₂N in the Pbcm structure (4 formula units per unit cell) from the calculated results. For each crystal diagram, a view of a horizontal chain axis is also provided for a single phosphate or phospho-nitride chain. #### **Computationally predicted structure** Calculations have now verified that the SD structure is more stable than the s_1 structure by 0.1 eV/FU. #### **Experimentally realized structure** Synthesis of Li₂PO₂N by Keerthi Senevirathne, Cynthia Day, Michael Gross, and Abdessadek Lachgar (SSI 233, 95-101 (2013)) High temperature solid state synthesis using reaction: $$\text{Li}_2\text{O} + \frac{1}{5}\text{P}_2\text{O}_5 + \frac{1}{5}\text{P}_3\text{N}_5 \rightarrow \text{Li}_2\text{PO}_2\text{N}$$ ## Comparison of synthesized Li₂PO₂N with Li₂SiO₃ # Electronic band structure of SD-Li₂PO₂N ## More details of SD-Li₂PO₂N structure #### **Ball and stick model** Isosurfaces (maroon) of charge density of states at top of valence band, primarily π states on N. 8/17/2016 **IMRC 2016** ## Vibrational spectrum of SD-Li₂PO₂N Note: no structural changes were observed while heating in vacuum up to 1050° C. #### Ionic conductivity of SD-Li₂PO₂N ## NEB analysis of E_m (vacancy mechanism) 37 8/17/2016 IMRC 2016 #### Summary of the Li₂PO₂N story - ☐ Predicted on the basis of first principles theory - ☐ Subsequently, experimentally realized by Keerthi Seneviranthe and colleagues; generally good agreement between experiment and theory - ☐ Ion conductivity properties not (yet) competitive - ☐ Crystalline SD-Li₂PO₂N (Cmc2₁) is quite different from the amorphous LiPON electrolyte developed at ORNL #### Other electrolyte materials -- thiophosphate #### LiPON and LiS₂-P₂S₅ conductivities X. Yu, J. B. Bates, G. E. Jellison, Jr., and F. X. Hart, J. Electrochem. Soc. **144** 524-532 (1997): Fig. 3. Arrhenius plot of ionic conductivity of Lipon and Li₃PO₄ vs. temperature. $\sigma = 2 \times 10^{-6} \text{ S/cm}$ $E_a = 0.5 \text{ eV}$ M. Tatsumisago and A. Hayashi, J. Non-Cryst. Solids **354** 1411-1417 (2008): Fig. 5. Temperature dependences of the conductivities for the 70Li₂S · 30P₂S₅ glass and glass–ceramics. The conductivity data for the sample prepared by solid-state reaction are also shown. $$\sigma = 3 \times 10^{-3} \text{ S/cm}$$ E_a = 0.1 eV Systematic study of Li_xPS_y materials – (N. D. Lepley and N. A. W. Holzwarth, J. Electrochem. Soc. 159, A538 (2012), Phys. Rev. B 88, 104103 (2013)) 8/17/2016 40 #### **Comparison of some lithium** phosphates and thiophosphates Crystallizes (experimentally and computationally) into $P\overline{1}$ structure Experimentally amorphous; computationally metastable in $P\overline{1}$ structure ## Some lithium thiophosphate crystal structures # $\mathrm{Li_4P_2S_7}$ $\mathrm{Li_7P_3S_{11}}$ Experimentally amorphous; computationally metastable in $P\overline{1}$ structure S Experimentally and computationally metastable in $P\overline{1}$ structure Vacancy migration analysis from NEB results for $Li_7P_3S_{11}$: Lepley & Holzwarth, *JECS* **159**, A538-A547 (2012) Li Experiment -- A Hayashi et al., J. Solid State Electrochem. 14, 1761 (2010): $$\sigma \approx 2 - 3 \times 10^{-3} \text{ S/cm}$$ $E_A \approx 0.12 - 0.18 \text{ eV}$ #### From ORNL: Experiment on electrolyte Li₃PS₄ Communication pubs.acs.org/JACS #### Anomalous High Ionic Conductivity of Nanoporous β -Li₃PS₄ Zengcai Liu,[†] Wujun Fu,[†] E. Andrew Payzant,^{†,‡} Xiang Yu,[†] Zili Wu,^{†,§} Nancy J. Dudney,[‡] Jim Kiggans,[‡] Kunlun Hong,[†] Adam J. Rondinone,[†] and Chengdu Liang*,[†] **Figure 5.** Electrochemical stability of *β*-Li₃PS₄ and cycling stability with metallic lithium electrodes. (a) CV of a Li/*β*-Li₃PS₄/Pt cell, where Li and Pt serve as the reference/counter and working electrodes, respectively. (b) Lithium cyclability in a symmetric Li/*β*-Li₃PS₄/Li cell. The cell was cycled at a current density of 0.1 mA cm⁻² at room temperature and 80 °C. **Figure 1.** Arrhenius plots for nanoporous β -Li₃PS₄ (line a), bulk β -Li₃PS₄ (line b), and bulk γ -Li₃PS₄ (line c). The conductivity data for bulk Li₃PS₄ are reproduced from the work of Tachez.¹⁰. Lepley, Du, and Holzwarth, PRB 88, 104103 (2013) #### Summary of the Li_xPS_y story - ☐ Simulations verify that thiophosphates have better ion mobility properties than their phosphate analogs - ☐ Meta-stable crystalline Li₇P₃S₁₁ has been shown to have particularly favorable ion migration pathways - \square γ and β -Li₃PS₄ have very similar structures, but simulations show their ion mobilities to be different. #### Models of Idealized Interfaces ## Crystal structure of bulk $Li_3PS_4 - \gamma$ -form $Pmn2_1$ (#31) #### γ -Li₃PS₄ [0 1 0] surface ## Simulations of ideal γ -Li₃PS₄ [0 1 0] surface in the presence of Li #### **Initial configuration:** ### Computed optimized structure: ## Computational counter example – stable interface: stable interfac Li/β-Li₃PO₄ O Li N **0** \bigcirc P OS Computational counter example – WAKE FOREST stable interface: Li/SD-Li₂PO₂N - O Li - ON - **0** - P - OS ## Quantitative study of interfaces – (Lepley & Holzwarth, PRB **92** 214201 (2015)) Within any given periodic simulation cell with n_a units of material a and with n_b units of material b, we can define an interface energy: $$\tilde{\gamma}_{ab}\left(\tilde{\Omega},n_{a},n_{b}\right) = \frac{\tilde{E}_{ab}\left(\tilde{\Omega},A,n_{a},n_{b}\right) - n_{a}E_{a} - n_{b}E_{b}}{\text{area of interface}}$$ within supercell bulk energies In order approximately remove the effects of lattice strain: - Design the supercell to be commenserate with lattice a - Now the strain will scale with the amount of material b $$\Rightarrow \tilde{\gamma}_{ab} \left(\tilde{\Omega}, n_a, n_b \right) = \tilde{\gamma}_{ab}^{\lim} \left(\tilde{\Omega} \right) + n_b \sigma$$ It is convenient to model the interface between a solid electrolyte and solid electrode in the slab geometry using a periodic simulation cell: #### Lepley's linear equation for the interface energy: $$\tilde{\gamma}_{ab}\left(\tilde{\Omega}, n_a, n_b\right) = \tilde{\gamma}_{ab}^{\lim}\left(\tilde{\Omega}\right) + n_b\sigma$$ #### Some interface energy results | System | $\widetilde{\gamma}_{ab}^{ ext{lim}}$ (meV/Ų) | σ (meV/Ų) | |---|---|-----------| | $\text{Li}_2\text{O}[110]/\text{Li}(\Omega_1)$ | 30 | 6.1 | | $\text{Li}_2\text{O}[110]/\text{Li}(\Omega_2)$ | 26 | 0.2 | | $\text{Li}_2 \text{S}[110]/\text{Li}(\Omega_3)$ | 19 | 0.2 | | $Li_2S[100]/Li(\Omega_4)$ | 19 | 0.0 | | γ –Li $_3$ PO $_4$ [010]/Li(Ω_3) | 31 | 0.0 | | γ -Li ₃ PS ₄ [010]/Li ₂ S [110] | 16 | 1.0 | | γ–Li ₃ PS ₄ [010]/Li | -216 | -0.1 | Stable interface; composite electrolyte system Initially unstable interface; (meta)-stable buffer layer formed ## Partial density of states analysis of unstable Li₃PS₄/Li interface: $$\text{Li}_3\text{PS}_4 + 8\text{Li} \longrightarrow \text{Li}_3\text{P} + 4\text{Li}_2\text{S} + 12.30 \text{ eV}$$ #### Bulk reactions from estimated heats of formation $$\text{Li}_3\text{PS}_4 + 8\text{Li} \longrightarrow \text{Li}_3\text{P} + 4\text{Li}_2\text{S} + 12.30 \text{ eV}$$ Decomposition at interface $$\text{Li}_3\text{PO}_4 + 8\text{Li} \longrightarrow \text{Li}_3\text{P} + 4\text{Li}_2\text{O} + 6.64 \text{ eV}$$ (Meta-)stable interface # Evidence of kinetic barrier at Li₃PO₄/Li interface #### Summary of ideal interface story - \square A practical scheme was developed to compute an intensive measure of the interface interaction $\widetilde{\gamma}_{ab}^{\rm int}$, explicitly accounting for the effects of lattice stain. - ☐ Discussed bulk reactivity as related to the interface stability of the interfaces of - ☐ Li₃PO₄/Li (having a significant kinetic barrier to decomposition) - \square Li₃PS₄/Li (having localized decomposition). # Other thiophosphate compounds; comparison of Li₄P₂S₆ and Na₄P₂S₆ Zachary D. Hood, Cameron Kates, Melanie Kirkham, Shiba Adhikari, Chengdu Liang, and N. A. W. Holzwarth, *Solid State Ionics* **284**, 61-70 (2015) Larry E. Rush Jr. and N.A.W. Holzwarth, *Solid State Ionics* **286**, 45-50 (2016) High temperature processing of Li and Na thiophosphates have shown to produce dimer units $(P_2S_6)^{-4}$ (hexathiohypodiphosphates): Li/Na P R. Mercier, J.P. Malugani, B. Fahys, J. Douglade, G. Robert, *J. Solid State Chem.* **43**, 151–162 (1982). A. Kuhn, R. Eger, J. Nuss, B.V. Lotsch, *Z. Anorg. Allg. Chem.* **640**, 689–692 (2014). Crystal Space Group $P6_3/mcm$ (#193) $$P_{\uparrow} \equiv \pm z_P c \quad P_{\downarrow} \equiv \pm \left(\frac{1}{2} - z_P\right) c$$ Structural variation can be mapped on to a two-dimensional hexagonal lattice with each P configuration taking P or P √ settings; Li and S configurations fixed #### Structure of Na₄P₂S₆: Kuhn et al., ZAAC **640**, 689-692 (2014) synthesized single crystals with a monoclinc structure having space group C2/m with similarities to the trigonal structure with $P\overline{3}1m$ space group #### $Na_4P_2S_6$ Na P Structural comparison – view including *c*-axis S #### $Na_4P_2S_6$ #### Results for Na₄P₂S₆: Calculated heats of formation (eV per formula unit) for Na₄P₂S₆ and Li₄P₂S₆ in 4 structural models | | Na ₄ P ₂ S ₆ | Li ₄ P ₂ S ₆ | |----------------|---|---| | Kuhn structure | -11.47 eV | -12.07 eV | | Structure "b" | -11.47 eV | -12.42 eV | | Structure "c" | -11.56 eV | -12.46 eV | | Structure "d" | -11.56 eV | -12.46 eV | Models of disordered Mercier structure → Calculations find the most stable structure for both $Na_4P_2S_6$ and $Li_4P_2S_6$ to be the disordered Mercier structure, suggesting that the Kuhn structure is meta-stable. # Comparison of X-ray data for Li₄P₂S₆ with simulations Note: simulations scaled by 102% to compensate for systematic LDA error. Simulations consistent with incoherent average over all Pl and Pt configurations #### Ionic conductivity and Activation Energy for Li₄P₂S₆ $2.38 \times 10^{-7} \text{ S/cm}$ at 25°C and $2.33 \times 10^{-6} \text{ S/cm}$ at 100°C $\text{Li}_4\text{P}_2\text{S}_6$ pressed pellets with blocking (Al/C) electrodes Li/Li₄P₂S₆ /Li cells could not be cycled 8/17/2016 IMRC 2016 #### Comparison of vacancy migration of Na₄P₂S₆ and Li₄P₂S₆ #### Minimum ion vacancy migration energies | | $P\overline{3}1m$ | C2 / m | |---|-------------------|--------| | Na ₄ P ₂ S ₆ | 0.3 eV | 0.3 eV | | Li ₄ P ₂ S ₆ | 0.5 eV | 0.1 eV | Na/Li P S #### Conclusions on studies of Li₄P₂S₆ and Na₄P₂S₆: - ➤ Li₄P₂S₆ and Na₄P₂S₆ have interesting structural properties; simulations find the most stable structure for both to be the disordered Mercier structure, suggesting that the Kuhn structure is meta-stable. - Experimental structural studies for Li₄P₂S₆ agree with the simulations; material is found to be remarkably temperature independent and thermally stable relative to other thio-phosphates. - ➤ Measurements find Li₄P₂S₆ to have low ionic conductivity; simulations suggest that Na₄P₂S₆ may have more favorable ionic conductivity. - Models of ideal Li₄P₂S₆/Li interfaces find broken P—S bonds; Na₄P₂S₆/Na interfaces in the Kuhn structure may be slightly more stable #### **Additional thoughts** - ➤ Limitations of first principles modeling □ Small simulation cells □ Zero temperature ➤ Possible extensions □ Develop approximation schemes for treatment of larger supercells □ Use molecular dynamics and/or Monte Carlo techniques - ➤ Ideal research effort in materials includes close collaboration of both simulations and experimental measurements. - ➢ For battery technology, there remain many opportunities for new materials development.