Modeling Crystalline Electrolytes: Li₇P₃S₁₁ and Analogous Phosphates

Nicholas Lepley and N.A.W. Holzwarth

Wake Forest University

February 27, 2012

Why Study Thiophosphate Solid Electrolytes

- Many solid electrolytes have safety advantages over traditional organic liquid electrolytes
- Electrochemical stability window for solids allows new battery chemistries
- Lithium thiophosphates have high conductivities relative to LiPON and many other solid electrolyte materials
- Conductivity increase associated with crystallization

$Li_7P_3S_{11}$

- 42 atoms (2 formula units)/unit cell
- Triclinic (P1̄ symmetry)
- Mixture of PS_4 tetrahedra and P_2S_7 dimers
- No fractional occupancy

Summary of Experimental Findings

- Synthesis
 - Heated glass precursor
 - Water quenched melt
- Metastable with respect to Li₄P₂S₆ and Li₃PS₄

Fig. 5. Temperature dependences of the conductivities for the $70\text{Li}_2\text{S} \cdot 30\text{P}_2\text{S}_5$ glass and glass–ceramics. The conductivity data for the sample prepared by solid-state reaction are also shown.

Fig. 6. Simple phase diagram of the $70\text{Li}_2\text{S}\cdot30\text{P}_2\text{S}_5$ (mol %) composition based on the XRD results of crystals precipitated from the glass and the melt.

- Conductivity of 3×10^{-3} S/cm
- Activation energy of 0.12 eV per formula unit
- Described as "superionic conductor"

Goals for this theoretical study

Understanding Structures and Stability

Calculate heats of formation

Exploring Detailed Mechanisms for Conductivity

- Evaluate vacancy and interstitial defect migration mechanisms
- Energy cost for migration (E_m)
- Energy cost for defect pair formation (E_f)

Conductivity relations

- $E_A = E_f/2 + E_m$

Methods

Calculational Methods

- Density functional theory
- LDA approximation
- USPP
- Quantum Espresso(PWscf)

Exploring Detailed Mechanisms for Conductivity

- Defect calculations were carried out in 84 atom supercell
- Add/remove ion and compensate with a uniform charge of the opposite sign
- Nudged Elastic Band(NEB) method used to estimate migration barriers

Structures and Stability

Li₇P₃S₁₁

- Metastable
- $\bullet \ \, \text{Li}_{7}\text{P}_{3}\text{S}_{11} \rightarrow \text{Li}_{3}\text{PS}_{4} \, + \, \text{Li}_{4}\text{P}_{2}\text{S}_{6} \, + \, \text{S} \, \, \text{0.78 eV}$
- Corresponds to exothermic decomposition seen in experiment
- Crystal is stable at room temperature

$Li_7P_3O_{11}$

- Metastable
- $\bullet \ \, \text{Li}_{7}\text{P}_{3}\text{O}_{11} \rightarrow \text{Li}_{3}\text{PO}_{4} \, + \, \text{Li}_{4}\text{P}_{2}\text{O}_{7} \, \, 0.35 \, \, \text{eV}$
- Structure has not been experimentally realized

$^{\prime}$ Li $_{8}$ P $_{3}$ O $_{10}$ N

- Metastable
- $\text{Li}_8\text{P}_3\text{O}_{10}\text{N} \rightarrow \text{Li}_3\text{PO}_4 + \text{Li}_5\text{P}_2\text{O}_6\text{N} 0.06 \text{ eV}$
- Structure has not been experimentally realized

Understanding Conductivity: Li₇P₃S₁₁ Interstitial Sites

Table: $Li_7P_3S_{11}$ interstitial energies relative to α

Label	$E_i(eV)$
α	0.00
β	0.07
γ	0.11
δ	0.11
ϵ	0.18
ζ	0.19

- Found via grid search
- 6 inequivalent interstitial positions
- 7 perfect crystal Li positions

Understanding Conductivity: Li₇P₃S₁₁ Interstitial Migration

- Not evenly distributed
- Pure interstitial E_m =0.49 eV

Understanding Conductivity: Li₇P₃S₁₁ Vacancy Migration

- Energy range of vacancies is 0.28
 eV
- Large number of possibilities
- Pairwise steps
- "Shortest path problem" with E_m as weight

Understanding Conductivity: Li₇P₃S₁₁ Vacancy Migration

• Energy barriers (E_m)

$$\vec{c}
ightarrow 0.42 \text{ eV}$$

$$\vec{a} \rightarrow 0.29 \text{ eV}$$

$$ec{b}
ightarrow$$
 0.15 eV

• Calculated value agrees with experiment: $0.15eV \approx 0.12eV$

- Lowest energy complete path along a,b,c
- Paths contain significant structure

Understanding Conductivity: Li₇P₃S₁₁ Vacancy Migration

- Structure in paths can be related to locations of interstitial sites
- Vacancy only mechanism involves interstitial locations
- Many interstitial locations near lowest energy vacancy path

Understanding Conductivity: $Li_7P_3S_{11}$ Defect Pair Formation

Table: Li₇P₃S₁₁ interstitial energies

Label	$E_f(eV)$	$E_{\mathit{fm}}(eV)$
5ϵ	-0.03	0.13
4 γ	0.02	0.08
3β	0.05	0.09
7ϵ	0.07	0.11

- Several E_f values near zero
- E_{fm} is the barrier height for pair formation
- Negative value is within error due to limited supercell
- Low energy interstitials are similar to fractional occupancy

$Li_7P_3O_{11}$ and $Li_8P_3O_{10}N$

- Neither structure has been synthesized
- Insight into possible local structures in LiPON

Li₇P₃O₁₁ Conductivity

The activation energy for $Li_7P_3O_{11}$ was found in the same manner as its thiophosphate analogue.

- $E_m = 0.52 \text{ eV}$
- No structure corresponding to low energy metastable sites
- Typical $E_f \approx 0.8$
- Close to experimental values for similar materials

Li₈P₃O₁₀N Conductivity

Conductivity in $Li_8P_3O_{10}N$ was evaluated in a similar way.

- $E_m = 0.60 \text{ eV}$
- $E_f \approx 1.2$
- Close to experimental values for similar materials

Conclusions

- Stabilized crystal structure approximately corresponds to experiment
- Calculated metastability agrees with experiment
- Calculated E_A (0.16 eV) agrees well with experiment (0.12eV)
- Vacancy mechanism dominant
- Low energy interstitial sites appear to play an important role in conductivity
- Nitrogen addition increased stability, not conductivity

Acknowledgements

Supported by NSF grant DMR-0705239 Computer Modeling of

Crystalline Electrolytes – Lithium Thiophosphates and Phosphates N. D. Lepley and N. A. W. Holzwarth, J. Electrochem. Soc. 159, A538-A547 (2012)