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Intrinsic defects
The formation energies of interstitial-vacancy pairs are found to be Ef (γ) = 1.7 eV and Ef (β) =
2.1 eV. Estimating the intrinsic activation energy as EA = Em(interstitial) + Ef/2, we obtain good
agreement with experiment.2

Crystal Net direction Experiment (eV) This work (eV)
γ-Li3PO4 a 1.23 1.1

b 1.14 1.1
c 1.14 1.1

β-Li3PO4 b 1.6
a 1.4
c 1.4
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Interstitial migration paths show the most efficient ion transport mechanism for both γ- and β-Li3PO4,
with computed migration barriers of 0.3–0.5 eV, in good agreement with the measured 0.5 eV acti-
vation energy of extrinsic interstitials for Li4SiO4-Li3PO4 solid solutions.3 Structural diagrams show
meta-stable interstitial sites I and II located in the two distinct void channels for both crystals.
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Energy path diagrams for various vacancy migration paths in crystalline Li3PO4, showing minimal
barriers of 0.62 eV along the c-axis path for the γ form and 0.55 eV along the b-axis path for
the β form. These barriers are 0.3 eV lower than the measured activation energy for vacancy-rich
Li2.88PO3.73N0.14,1 where oxygen-vacancies may affect the migration barrier.

Raman spectra
LDA calculations show better agreement with experimental spectra than GGA;

simulation results in this poster are presented for the LDA functional unless
otherwise specified.
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Raman active modes of γ-Li3PO4, comparing ex-
perimental results with LDA and GGA calcula-
tions. Experiment A (from Ref. 6) was measured at
room temperature (RT). Experiment B and C (from
Ref. 7) were measured at RT and liquid nitro-
gen temperature (LNT), respectively. Experiment
D (from Ref. 8) was measured at LNT.

200 400 600 800 1000
ν (cm-1)

GGA

LDA

Exp. 

Raman active modes of β-Li3PO4, comparing ex-
perimental results with LDA and GGA calcula-
tions. Experimental data (from Ref. 8) were mea-
sured at LNT.
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γ-Li3PO4 Space group: Pnma
Metastable at room temperature; experimentally
measured. The Li ions are located on two crys-
tallographically different sites indicated with dif-
ferent shadings (gray and dark balls) in the figure.
Using the Wyckoff labels, the d site accounts for 8
equivalent atomic sites and the c site accounts for 4
equivalent atomic sites per unit cell. The P and O
ions are indicated by small balls and sticks (colored
yellow and blue respectively).
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7 β-Li3PO4 Space group: Pmn21
Low-temperature phase and energetically more sta-
ble than γ-phase. Two crystallographically distinct
Li sites are also indicated with different shadings
in the figure. Using the Wyckoff labels, the b site
accounts for 4 equivalent atomic sites and the a
site accounts for 2 equivalent atomic sites per unit
cell. Our calculations verify that the β form is en-
ergetically more stable: Eγ − Eβ = 0.03(0.01)
eV/Li3PO4 for LDA (GGA) calculations.

Introduction
• Solid-state lithium ion electrolytes such as Li3PO4-based materials1 are becoming increasingly im-

portant in batteries and related technologies.
• Li ion diffusion in crystalline γ-Li3PO4 has been measured to be slightly anisotropic with activation

energies of 1.1–1.3 eV.2 The activation energies can be reduced to 0.97 eV by N doping1 and to 0.5
eV by admixture with Li4SiO4.3

• In this work, first-principles calculations4 have been performed to model the migration energies
for both vacancy and interstitial mechanisms of Li ions in γ-Li3PO4 and β-Li3PO4. For extrinsic
defects, activation energy EA is the same as the migration energy of the defects, Em. However,
for intrinsic defects, using quasi-equilibrium statistical mechanics arguments,5 it follows that EA =
Em + Ef/2, where Ef is the formation energy of the vacancy-interstitial pair.
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